Skip to main content

Unraveling the Chaos-Land and Its Organization in the Rabinovich System

  • Chapter
  • First Online:
Advances in Dynamics, Patterns, Cognition

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

A suite of analytical and computational techniques based on symbolic representations of simple and complex dynamics is further developed and employed to unravel the global organization of bi-parametric structures that underlie the emergence of chaos in a simplified resonantly coupled wave triplet system, known as the Rabinovich system. Bi-parametric scans reveal the stunning intricacy and intramural connections between homoclinic and heteroclinic connections, and codimension-2 Bykov T-points and saddle structures, which are the prime organizing centers of complexity of the bifurcation unfolding of the given system. This suite includes Deterministic Chaos Prospector (DCP) to sweep and effectively identify regions of simple (Morse-Smale) and chaotic structurally unstable dynamics in the system. Our analysis provides striking new insights into the complex behaviors exhibited by this system, that are hitherto unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraimovich, V., Shilnikov, L.: Strange attractors and quasiattractors. In: Nonlinear Dynamics and Turbulence. Interaction of Mechanics and Mathematics Series, pp. 1–34. Pitman, Boston (1983)

    Google Scholar 

  2. Afraimovich, V.S., Bykov, V., Shilnikov, L.P.: Akademiia Nauk. SSSR Doklady 234, 336–339 (1977)

    Google Scholar 

  3. Afraimovich, V., Bykov, V., Shilnikov, L.P.: Trans. Moscow Math. Soc. 2, 153 (1983)

    Google Scholar 

  4. Barrio, R., Blesa, F., Serrano, S., Shilnikov, A.: Phys. Rev. E. 84 (3), 035201 (2011)

    Article  Google Scholar 

  5. Barrio, R., Shilnikov, A., Shilnikov, L.P.: Int. J. Bifurc. Chaos 22 (04), 1230016 (2012)

    Article  Google Scholar 

  6. Bussac, M.N.: Phys. Scr. T2 (SI) (1982). http://iopscience.iop.org/article/10.1088/0031-8949/1982/T2A/014/meta

  7. Bykov, V.V.: On the structure of bifurcations sets of dynamical systems that are systems with a separatrix contour containing saddle-focus. In: Methods of Qualitative Theory of Differential Equations, pp. 44–72. Gorky University (1980) (in Russian)

    Google Scholar 

  8. Bykov, V.: Physica D: Nonlinear Phenom. 62 (1–4), 290 (1993)

    Article  Google Scholar 

  9. Chen, C., Cao, J., Zhang, X.: Nonlinearity 21 (2), 211 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dmitrieva, T.V., Ryskin, N.M.: J. Exp. Theor. Phys. 89 (5), 1015 (1999)

    Article  Google Scholar 

  11. Emiroglu, S., Uyaroǧlu, Y.: Sci. Res. Essays 5 (21), 3298 (2010)

    Google Scholar 

  12. Ezersky, A.B., Rabinovich, M.I., Stepanyants, Y.A., Shapiro, M.F.: ZETP 76 (3), 991 (1979)

    Google Scholar 

  13. Gallas, J.A.:Int. J. Bifurc. Chaos 20 (02), 197 (2010)

    Google Scholar 

  14. Guckenheimer, J., Williams, R.F.: Publications Mathématiques de l’IHÉS 50, 59 (1979)

    Article  Google Scholar 

  15. Kocamaz, U.E., Uyaroǧlu, Y., Kizmaz, H.: Int. J. Adapt. Control Signal Process. 28 (12), 1413 (2014)

    Article  Google Scholar 

  16. Kostrykin, S.V., Romanova, N.N., Yakushkin, I.G.: On stochastic stabilization of the Kelvin-Helmholtz instability by three-wave resonant interaction. CHAOS 21, 043117 (2011). doi:http://dx.doi.org/10.1063/1.3656800

    Google Scholar 

  17. Krishchenko, A., Starkov, K.: Phys. Lett. A 367 (1–2), 65 (2007)

    Article  Google Scholar 

  18. Kuznetsov, S.P.: Tech. Phys. 61 (3), 436 (2016)

    Article  Google Scholar 

  19. Kuznetsov, S.P.: Lorenz Type Attractor in Electronic Parametric Generator and Its Transformation Outside the Parametric Resonance. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds.) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol. 20. Springer, New York (2017)

    Google Scholar 

  20. Letellier, C., Aguirre, L., Maquet, J., Lefebvre, B.: Physica D 179 (1–2), 33 (2003)

    Article  MathSciNet  Google Scholar 

  21. Liu, A., Li, L.: Nonlinear Dynam. 81 (4), 2141 (2015)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Yang, Q., Pang, G.: J. Comput. Appl. Math. 234 (1), 101 (2010)

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Li, L., Wang, X.: Int. J. Geom. Methods Mod. Phys. 12 (09), 1550092 (2015)

    Article  MathSciNet  Google Scholar 

  24. Llibre, J., Valls, C.: J. Geom. Phys. 58 (12), 1762 (2008)

    Article  MathSciNet  Google Scholar 

  25. Llibre, J., Messias, M., da Silva, P.R.: J. Phys. A: Math. Theor. 41 (27), 275210 (2008)

    Google Scholar 

  26. Neukirch, S.: Phys. Rev. E 63, 036202 (2001)

    Article  Google Scholar 

  27. Pikovsky, A., Rabinovich, M., Trakhtengerts, V.: Sov. Phys.—JETP 47 (4), 715 (1978)

    Google Scholar 

  28. Porter, J., Knobloch, E.: Physica D 143 (1–4), 138 (2000)

    Article  MathSciNet  Google Scholar 

  29. Rabinovich, M.I., Fabrikant, A.L.: ZETP 77 (2), 617 (1979)

    Google Scholar 

  30. Shilnikov, L.P.: Sov. Math. 6, 163 (1965)

    Google Scholar 

  31. Shilnikov, L.P.: Matematicheskii Sbornik 119 (3), 461 (1968)

    Google Scholar 

  32. Shilnikov, L.: Bifurcation theory and the Lorenz model. In: Marsden, J., McCraken, M. (eds.) Appendix to Russian Edition of The Hopf Bifurcation and Its Applications, pp. 317–335. Mir Publications (1980) (in Russian)

    Google Scholar 

  33. Shilnikov, L.: The theory of bifurcations and quasiattractors. Uspekhi Math. Nauk 36, 240–242 (1981) (in Russian). http://www.mathnet.ru/php/journal.phtml?jrnid=rm&option_lang=rus

  34. Shilnikov, A.: Bifurcations and chaos in the Morioka–Shimizu model. Part I. In: Methods of Qualitative Theory of Differential Equations, pp. 180–193. Gorky University (1986) (in Russian)

    Google Scholar 

  35. Shilnikov, A.L.: Physica D: Nonlinear Phenom. 62 (1–4), 338 (1993)

    Article  Google Scholar 

  36. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  37. Tudoran, R.A.: Int. J. Geom. Methods Mod. Phys. 09 (05), 1220008 (2012)

    Article  MathSciNet  Google Scholar 

  38. Tudoran, R.M., Gîrban, A.: Discret. Contin. Dynam. Syst. Ser. B 15 (3), 789 (2011)

    Article  Google Scholar 

  39. Vishkind, S.Y., Rabinovich, M.I.: ZETP 71 (8), 557 (1976)

    Google Scholar 

  40. Wang, P., Masui, K.: Phys. Lett. A 81 (2), 97 (1981)

    Article  MathSciNet  Google Scholar 

  41. Wersinger, J.M., Finn, J.M., Ott, E.: Phys. Fluids 23 (6), 1142 (1980)

    Article  MathSciNet  Google Scholar 

  42. Xing, T., Barrio, R., Shilnikov, A.: Int. J. Bifurc. Chaos 24 (08), 1440004 (2014)

    Article  Google Scholar 

  43. Xing, T., Wojcik, J., Barrio, R., Shilnikov, A.: International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012), pp. 129–140. Springer, Berlin (2014)

    Google Scholar 

  44. Xing, T., Wojcik, J., Zaks, M., Shilnikov, A.L.: In: Nicolis, G., Basios, V. (eds.) Chaos, Information Processing and Paradoxical Games: The Legacy of J.S. Nicolis. World Scientific Publishing, Singapore (2015)

    Google Scholar 

Download references

Acknowledgements

AS acknowledges the financial support from RSF grant 14-41-00044 at the Lobachevsky University of Nizhny Novgorod, as well as NSF BIO-DMS grant IOS-1455527. We thank the acting members of the NEURDS (Neuro Dynamical Systems) lab at GSU for helpful discussions and proof-reading the manuscript. We are very thankful to Sunitha Basodi for her deep insights into the computational aspects of GPU programming, and the Periodicity Correction algorithm. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pusuluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pusuluri, K., Pikovsky, A., Shilnikov, A. (2017). Unraveling the Chaos-Land and Its Organization in the Rabinovich System. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics