Vortices Termination in the Cardiac Muscle

  • Valentin I. Krinsky
  • Vadim N. Biktashev
  • Niels F. Otani
  • Stefan Luther
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 20)


Methods for termination of three-dimensional electrical vortices in the heart are needed for development of patient-friendly cardiac defibrillation techniques (Nature 475, 235, 2011). The defibrillation technique used today is the delivery of a high-energy electric shock (360 J, 1 kV, 30 A, 12 ms, when applied externally) often associated with severe side effects. Developing low-energy defibrillation methods are hampered by two problems: the unknown locations of the cores of the vortices, and the unpredictable phases of the vortex waves rotating around these cores. The first problem has been resolved through the use of electric field pulses to excite the cores of all pinned vortices simultaneously. Approaches to solve the second problem are being developed. One of them is based on the phase scanning of all pinned vortices in parallel to hit the critical time window (“Vulnerable Window”, VW) of every pinned vortex. We investigate the related physical mechanisms and describe problems created by scanning. We describe also a mechanism by which a 3-dim scroll vortex may be terminated with a VW of the full 2π radians. It makes knowledge of the wave phase no longer required. We describe a mechanism terminating also a free (not pinned) vortex, when the vortex’s core passes not very far from a defect. About 500 experiments with termination of vortices during ventricular fibrillation in pig isolated hearts confirm that pinned vortices, hidden from direct observation, are significant in fibrillation. These results form a physical basis needed for creation of new effective methods for termination vortices underlying fibrillation.


Cardiac defibrilation Vortex waves Pinning 



The research leading to the results has received funding from Max Planck Gesellschaft, the European Community Seventh Framework Programme FP7/2007–2013 under Grant Agreement 17 No. HEALTH-F2-2009-241526, EUTrigTreat, and from EPSRC (UK) grant EP/I029664. We acknowledge support from the German Federal Ministry of Education and Research (BMBF) (project FKZ 031A147, GO-Bio), the German Research Foundation (DFG) (Collaborative Research Centres SFB 1002 Project C3 and SFB 937 Project A18), the German Center for Cardiovascular Research (DZHK e.V.), and EPSRC (UK) grant EP/N014391. US NIH grant no. R01HL089271.

Ethics The study was reviewed and approved by the ethics committee, permit no. 33.9-42052-04-11/0384, Lower Saxony State Office for Customer Protection and Food Safety.

Competing Interests We have no competing interests.


  1. 1.
    Wiener, N., Rosenblueth, A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946)MathSciNetMATHGoogle Scholar
  2. 2.
    Belousov, B.P.: Periodically acting reaction and its mechanism. Sbornik Referatov po Radiotsionnoi Meditsine, [Collection of Abstracts on Radiation Medicine] p. 145 (1959)Google Scholar
  3. 3.
    Pumir, A., Krinsky, V.: Unpinning of a rotating wave in cardiac muscle by an electric field. J. Theor. Biol. 199, 311–319 (1999)CrossRefGoogle Scholar
  4. 4.
    Takagi, S., et al.: Unpinning and removal of a rotating wave in cardiac muscle. Phys. Rev. Lett. 93, 058101 (2004)CrossRefGoogle Scholar
  5. 5.
    Pumir, A., et al.: Wave emission from heterogeneities opens a way to controlling chaos in the heart. Phys. Rev. Lett. 99, 208101 (2007)CrossRefGoogle Scholar
  6. 6.
    Fenton, F.H., et al.: Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120, 467–476 (2009)CrossRefGoogle Scholar
  7. 7.
    Luther, S., et al.: Low-energy control of electrical turbulence in the heart. Nature 475, 235–239 (2011)CrossRefGoogle Scholar
  8. 8.
    Davidenko, J.M., Pertsov, A., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)CrossRefGoogle Scholar
  9. 9.
    Winfree, A.T.: Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994)CrossRefGoogle Scholar
  10. 10.
    Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998)CrossRefGoogle Scholar
  11. 11.
    Winfree, A., Strogatz, S.: Organizing centres for three-dimensional chemical waves. Nature 311, 611–615 (1984)CrossRefGoogle Scholar
  12. 12.
    Rappel, W.-J., Fenton, F., Karma, A.: Spatiotemporal control of wave instabilities in cardiac tissue. Phys. Rev. Lett 83, 456–459 (1999)CrossRefGoogle Scholar
  13. 13.
    Alonso, S., Panfilov, A.: Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett. 100, 218101 (2008)CrossRefGoogle Scholar
  14. 14.
    Jiménez, Z., Steinbock, O.: Stationary vortex loops induced by filament interaction and local pinning in a chemical reaction-diffusion system. Phys. Rev. Lett. 109, 1–4 (2012)CrossRefGoogle Scholar
  15. 15.
    Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–167 (1994)CrossRefGoogle Scholar
  16. 16.
    Mines, G.R.: On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans. R. Soc. Can. 8, 43–52 (1914)Google Scholar
  17. 17.
    Pumir, A. et al.: Wave emission from heterogeneities opens a way to controlling chaos in the heart. Phys. Rev. Lett. 99, 208101 (2007)CrossRefGoogle Scholar
  18. 18.
    Sepulveda, N.G., Roth, B.J., Wikswo, J.P.: Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55, 987–999 (1989)CrossRefGoogle Scholar
  19. 19.
    Ripplinger, C.M., Krinsky, V.I., Nikolski, V.P., Efimov, I.R.: Mechanisms of unpinning and termination of ventricular tachycardia. Am. J. Physiol. 291, H184–H192 (2006)Google Scholar
  20. 20.
    Bittihn, P., et al.: Far field pacing supersedes anti-tachycardia pacing in a generic model of excitable media. New J. Phys. 10, 103012 (2008)CrossRefGoogle Scholar
  21. 21.
    Bittihn, P., et al.: Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media. Philos. Trans. R. Soc. A 368, 2221–2236 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Behrend, A., Bittihn, P., Luther, S.: Predicting unpinning success rates for a pinned spiral in an excitable medium. Comput. Cardiol. 37 345–348 (2010)Google Scholar
  23. 23.
    Pumir, A., Krinsky, V.: Unpinning of a rotating wave in cardiac muscle by an electric field. J. Theor. Biol. 199, 311–319 (1999)CrossRefGoogle Scholar
  24. 24.
    Shajahan, T., Berg, S., Luther, S., Krinsky, V., Bittihn, P.: Scanning and resetting the phase of a pinned spiral wave using periodic far field pulses. New J. Phys. 18, NJP-104359 (2016)Google Scholar
  25. 25.
    Krinsky, V.I., Agladze, K.I.: Interaction of rotating waves in an active chemical medium. Physica D 8, 50–56 (1983)CrossRefGoogle Scholar
  26. 26.
    Mahajan, A., et al.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410 (2008)CrossRefGoogle Scholar
  27. 27.
    Tyson, J.J., Keener, J.P.: Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361 (1988)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Biktashev, V.N.: Evolution of vortices in active media. Ph.D. Thesis, Moscow Institute of Physics and Technology (1989)Google Scholar
  29. 29.
    Keener, J., Tyson, J.: The dynamics of scroll waves in excitable media. SIAM Rev. 34, 1–39 (1992)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Panfilov, A.V., Rudenko, A.N., Krinsky, V.I.: Vortical rings in three-dimensional active media with diffusion in two components. Biophys. 31, 926–931 (1986)Google Scholar
  31. 31.
    Alonso, S., Sagués, F., Mikhailov, A.S.: Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722 (2003)CrossRefGoogle Scholar
  32. 32.
    Hornung, D.: Cardiac arrhythmia termination on the vascular and organ scale. Ph.D. Thesis, p.121, Georg-August Universität Göttingen (2013)Google Scholar
  33. 33.
    Isomura, A., Hoerning, M., Agladze, K., Yoshikawa, K.: Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli. Phys. Rev. E 78, 066216 (2008)CrossRefGoogle Scholar
  34. 34.
    Pumir, A., et al.: Wave-train induced unpinning of weakly anchored vortices in excitable media. Phys. Rev. E 81, 010901 (2010)CrossRefGoogle Scholar
  35. 35.
    Otani, N., Krinski, V., Han, S., Carr, J., Luther, S.: Modification of scroll wave filaments when electric fields are applied to the heart. In: SIAM-Life Sciences, July 11–16. SIAM, Boston (2016)Google Scholar
  36. 36.
    Zemlin, C., Mironov, S., Pertsov, A.: Delayed success in termination of three-dimensional reentry: role of surface polarization. J. Cardiovasc. Electrophysiol. 14, 257 (2003)CrossRefGoogle Scholar
  37. 37.
    Weiss, J.N., et al.: Perspective: a dynamics-based classification of ventricular arrhythmias. J. Mol. Cell. Cardiol. 82, 136 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Valentin I. Krinsky
    • 1
    • 2
  • Vadim N. Biktashev
    • 3
  • Niels F. Otani
    • 4
  • Stefan Luther
    • 1
  1. 1.Max Planck Institute DSBMPGGöttingenGermany
  2. 2.INLNCNRSValbonneFrance
  3. 3.University of ExeterExeterUK
  4. 4.Rochester Institute of TechnologyRochesterUSA

Personalised recommendations