Skip to main content

Respiratory Neural Network: Activity and Connectivity

  • Chapter
  • First Online:
Advances in Dynamics, Patterns, Cognition

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

  • 935 Accesses

Abstract

Chaos in the rhythmic activity is a major issue that has been discussed in many studies of neuroscience and physiology, and especially in the respiratory air flow. Here, we present the results of two studies concerning the activity and the connectivity of the respiratory neural network in healthy humans and patients with obstructive lung disease. Our results show an increase in the dynamic chaos of airway flow in patients, focusing on expiratory flow. We then sought the reasons for this augmentation in analyzing the activity of neural centers involved in respiratory rhythmogenesis, using functional brain imaging of the automatic neural networks, the first group generating inspiration (pre-Bötzinger complex) and the second in charge of expiration (the parafacial group). Brain imaging reveals in healthy humans a significant activation of the pre-Bötzinger complex linked to a high active inspiration while patients have a higher expiratory parafacial excitability leading to an active expiration. We also propose a theoretical model of respiratory rhythmogenesis which reproduces the synchronized respiratory neural network from two chaotic pacemakers, the first modelling the pre-Bötzinger complex and the second modelling the expiration. Our model reveals how the synchronized chaotic activity of this network reproduced the experimental data of the activity of the respiratory nerve centers both in healthy humans and the patients. We are able to reproduce fMRI signal after hemodynamic convolution of the simulated synchronized neural network. Besides, the respiratory neural network comprises the automatic brainstem and voluntary cortical network. The extension of the study to other important aspects as functional connectivity and Granger causality allow to better understand the communication within the network with the aim to develop new therapeutic strategies involving the modulation of brain oscillation (Hess et al., PLoS One 8:e75740, 2013; Yu et al., Hum. Brain Mapp. 37:2736–2754, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Courbage, M., Nekorkin, V.I.: Map based models in neurodynamics. Int. J. Bifurcation Chaos 20, 1631–1651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Courbage, M., Nekorkin, V.I., Vdovin, L.V.: Chaotic oscillations in a map-based model of neural activity. Chaos 17, 043109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davenport, P.W., Cruz, M., Stecenko, A.A., Kifle, Y.: Respiratory-related potentials in children with life-threatening asthma. Am. J. Respir. Crit. Care Med. 161, 1830–1835 (2000)

    Article  Google Scholar 

  4. Del Negro, C.A., Wilson, C.G., Butera, R.J., Rigatto, H., Smith, J.C.: Periodicity, mixed mode oscillations, and quasi periodicity in a rhythm-generating neural network. Biophys. J. 82, 206–214 (2002)

    Article  Google Scholar 

  5. Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. U. S. A. 98, 13763–13768 (2001)

    Article  Google Scholar 

  6. Eldaief, M.C., Halko, M.A., Buckner, R.L., Pascual-Leone, A.: Transcranial magnetic stimulation modulates the brain intrinsic activity in a frequency-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 108, 21229–21234 (2011)

    Article  Google Scholar 

  7. Feldman, J.L., Del Negro, C.A.: Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–241 (2006)

    Article  Google Scholar 

  8. Fortuna, M.G., West, G.H., Stornetta, R.L., Guyenet, P.G.: Bötzinger expiratory-augmenting neurons and the parafcial respiratory group. J. Neurosci. 28, 2506–2515 (2008)

    Article  Google Scholar 

  9. Gandevia, S.C., Rothwell, J.C.: Activation of the human diaphragm from the motor cortex. J. Physiol. 384, 109–118 (1987)

    Article  Google Scholar 

  10. Geweke, J.: Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304–313 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberger, A.L., Amaral, L.A., Hausdorff, J., Ivanov, P.C., Peng, C.K., et al.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. U. S. A. 99, 2466–2472 (2002)

    Article  Google Scholar 

  12. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  13. Hess, A., Yu, L., Klein, I., De Mazancourt, M., Jebrak, G., Mal, H., Brugiere, O., Fournier, M., Courbage, M., Dauriat, G., Schouman-Clayes, E., Clerici, C., Mangin, L.: Neural mechanisms underlying breathing complexity. PLoS One 8, e75740 (2013)

    Article  Google Scholar 

  14. Hopkinson, N.S., Sharshar, T., Ross, E.T., Nickol, A.H., Dayer, M.J., Porcher, R., Jonville, S., Moxham, J., Polkey, M.I.: Corticospinal control of respiratory muscles in chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol. 141, 1–12 (2004)

    Article  Google Scholar 

  15. Janczewski, W.A., Feldman, J.L.: Distinct rhythm generators for inspiration and expiration in the juvenile rat. J. Physiol. 57, 407–420 (2006)

    Article  Google Scholar 

  16. Jolley, C.J., Luo, Y.M., Steier, J., Reilly, C., Seymour, J., Lunt, A., Ward, K., Rafferty, G.F., Polkey, M.I., Moxham, J.: Neural respiratory drive in healthy subjects and in COPD. Eur. Respir. J. 33, 289–297 (2009)

    Article  Google Scholar 

  17. Mangin, L., Fiamma, M.N., Straus, C., Derenne, J.P., Zelter, M., Similowski, T.: Source of human ventilatory chaos: lessons from switching controlled mechanical ventilation to inspiratory pressure support in critically ill patients. Respir. Physiol. Neurobiol. 161, 189–196 (2008)

    Article  Google Scholar 

  18. Onimaru, H., Homma, I.: A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J. Neurosci. 23, 1478–1486 (2003)

    Google Scholar 

  19. Poon, C.S., Merrill, C.K.: Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997)

    Article  Google Scholar 

  20. Rabinovich, M.I., Abarbanel, H.D.I.: The role of chaos in neural systems. Neuroscience 87, 5–14 (1998)

    Article  Google Scholar 

  21. Sassoon, C.S., Gruer, S.E., Sieck, G.C.: Temporal relationships of ventilator failure, pump fatigue, and diaphragm fatigue. J. Appl. Physiol. 81, 238–245 (1996)

    Google Scholar 

  22. Sharshar, T., Hopkinson, N.S., Jonville, S., Prigent, H., Carlier, R., Dayer, M.J., Swallow, E.B., Lofaso, F., Moxham, J., Polkey, M.I.: Demonstration of a second rapidly conducting cortico-diaphragmatic pathway. J. Physiol. 560, 897–908 (2004)

    Article  Google Scholar 

  23. Smith, G.D., Cox, C.L., Sherman, M., Rinzel, J.: Fourier analysis of sinusoidally driven thlamocortical relay neurons and a minimal integrate-and-fire-or-burt model. J. Neurophysiol. 83, 588–610 (2000)

    Google Scholar 

  24. Thoby-Brisson, M., Karlen, M., Charnay, P., Champagnat, J., Fortin, G.: Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nature Neurosci. 12, 1028–1036 (2009)

    Article  Google Scholar 

  25. Wittmeier, S., Song, G., Duffin, J., Poon, C.S.: Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proc. Natl. Acad. Sci. U. S. A. 105, 18000–18008 (2008)

    Article  Google Scholar 

  26. Yu, L., De Mazancourt, M., Hess, A., Ashadi, F.R., Klein, I., Mal, H., Courbage, M., Mangin, L.: Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease. Hum. Brain Mapp. 37, 2736–2754 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Mangin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mangin, L., Courbage, M. (2017). Respiratory Neural Network: Activity and Connectivity. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics