Respiratory Neural Network: Activity and Connectivity

  • Laurence Mangin
  • Maurice Courbage
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 20)


Chaos in the rhythmic activity is a major issue that has been discussed in many studies of neuroscience and physiology, and especially in the respiratory air flow. Here, we present the results of two studies concerning the activity and the connectivity of the respiratory neural network in healthy humans and patients with obstructive lung disease. Our results show an increase in the dynamic chaos of airway flow in patients, focusing on expiratory flow. We then sought the reasons for this augmentation in analyzing the activity of neural centers involved in respiratory rhythmogenesis, using functional brain imaging of the automatic neural networks, the first group generating inspiration (pre-Bötzinger complex) and the second in charge of expiration (the parafacial group). Brain imaging reveals in healthy humans a significant activation of the pre-Bötzinger complex linked to a high active inspiration while patients have a higher expiratory parafacial excitability leading to an active expiration. We also propose a theoretical model of respiratory rhythmogenesis which reproduces the synchronized respiratory neural network from two chaotic pacemakers, the first modelling the pre-Bötzinger complex and the second modelling the expiration. Our model reveals how the synchronized chaotic activity of this network reproduced the experimental data of the activity of the respiratory nerve centers both in healthy humans and the patients. We are able to reproduce fMRI signal after hemodynamic convolution of the simulated synchronized neural network. Besides, the respiratory neural network comprises the automatic brainstem and voluntary cortical network. The extension of the study to other important aspects as functional connectivity and Granger causality allow to better understand the communication within the network with the aim to develop new therapeutic strategies involving the modulation of brain oscillation (Hess et al., PLoS One 8:e75740, 2013; Yu et al., Hum. Brain Mapp. 37:2736–2754, 2016).


Respiration Neural network Pre-Bötzinger complex Synchronization 


  1. 1.
    Courbage, M., Nekorkin, V.I.: Map based models in neurodynamics. Int. J. Bifurcation Chaos 20, 1631–1651 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Courbage, M., Nekorkin, V.I., Vdovin, L.V.: Chaotic oscillations in a map-based model of neural activity. Chaos 17, 043109 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Davenport, P.W., Cruz, M., Stecenko, A.A., Kifle, Y.: Respiratory-related potentials in children with life-threatening asthma. Am. J. Respir. Crit. Care Med. 161, 1830–1835 (2000)CrossRefGoogle Scholar
  4. 4.
    Del Negro, C.A., Wilson, C.G., Butera, R.J., Rigatto, H., Smith, J.C.: Periodicity, mixed mode oscillations, and quasi periodicity in a rhythm-generating neural network. Biophys. J. 82, 206–214 (2002)CrossRefGoogle Scholar
  5. 5.
    Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. U. S. A. 98, 13763–13768 (2001)CrossRefGoogle Scholar
  6. 6.
    Eldaief, M.C., Halko, M.A., Buckner, R.L., Pascual-Leone, A.: Transcranial magnetic stimulation modulates the brain intrinsic activity in a frequency-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 108, 21229–21234 (2011)CrossRefGoogle Scholar
  7. 7.
    Feldman, J.L., Del Negro, C.A.: Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–241 (2006)CrossRefGoogle Scholar
  8. 8.
    Fortuna, M.G., West, G.H., Stornetta, R.L., Guyenet, P.G.: Bötzinger expiratory-augmenting neurons and the parafcial respiratory group. J. Neurosci. 28, 2506–2515 (2008)CrossRefGoogle Scholar
  9. 9.
    Gandevia, S.C., Rothwell, J.C.: Activation of the human diaphragm from the motor cortex. J. Physiol. 384, 109–118 (1987)CrossRefGoogle Scholar
  10. 10.
    Geweke, J.: Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304–313 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldberger, A.L., Amaral, L.A., Hausdorff, J., Ivanov, P.C., Peng, C.K., et al.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. U. S. A. 99, 2466–2472 (2002)CrossRefGoogle Scholar
  12. 12.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)CrossRefGoogle Scholar
  13. 13.
    Hess, A., Yu, L., Klein, I., De Mazancourt, M., Jebrak, G., Mal, H., Brugiere, O., Fournier, M., Courbage, M., Dauriat, G., Schouman-Clayes, E., Clerici, C., Mangin, L.: Neural mechanisms underlying breathing complexity. PLoS One 8, e75740 (2013)CrossRefGoogle Scholar
  14. 14.
    Hopkinson, N.S., Sharshar, T., Ross, E.T., Nickol, A.H., Dayer, M.J., Porcher, R., Jonville, S., Moxham, J., Polkey, M.I.: Corticospinal control of respiratory muscles in chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol. 141, 1–12 (2004)CrossRefGoogle Scholar
  15. 15.
    Janczewski, W.A., Feldman, J.L.: Distinct rhythm generators for inspiration and expiration in the juvenile rat. J. Physiol. 57, 407–420 (2006)CrossRefGoogle Scholar
  16. 16.
    Jolley, C.J., Luo, Y.M., Steier, J., Reilly, C., Seymour, J., Lunt, A., Ward, K., Rafferty, G.F., Polkey, M.I., Moxham, J.: Neural respiratory drive in healthy subjects and in COPD. Eur. Respir. J. 33, 289–297 (2009)CrossRefGoogle Scholar
  17. 17.
    Mangin, L., Fiamma, M.N., Straus, C., Derenne, J.P., Zelter, M., Similowski, T.: Source of human ventilatory chaos: lessons from switching controlled mechanical ventilation to inspiratory pressure support in critically ill patients. Respir. Physiol. Neurobiol. 161, 189–196 (2008)CrossRefGoogle Scholar
  18. 18.
    Onimaru, H., Homma, I.: A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J. Neurosci. 23, 1478–1486 (2003)Google Scholar
  19. 19.
    Poon, C.S., Merrill, C.K.: Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997)CrossRefGoogle Scholar
  20. 20.
    Rabinovich, M.I., Abarbanel, H.D.I.: The role of chaos in neural systems. Neuroscience 87, 5–14 (1998)CrossRefGoogle Scholar
  21. 21.
    Sassoon, C.S., Gruer, S.E., Sieck, G.C.: Temporal relationships of ventilator failure, pump fatigue, and diaphragm fatigue. J. Appl. Physiol. 81, 238–245 (1996)Google Scholar
  22. 22.
    Sharshar, T., Hopkinson, N.S., Jonville, S., Prigent, H., Carlier, R., Dayer, M.J., Swallow, E.B., Lofaso, F., Moxham, J., Polkey, M.I.: Demonstration of a second rapidly conducting cortico-diaphragmatic pathway. J. Physiol. 560, 897–908 (2004)CrossRefGoogle Scholar
  23. 23.
    Smith, G.D., Cox, C.L., Sherman, M., Rinzel, J.: Fourier analysis of sinusoidally driven thlamocortical relay neurons and a minimal integrate-and-fire-or-burt model. J. Neurophysiol. 83, 588–610 (2000)Google Scholar
  24. 24.
    Thoby-Brisson, M., Karlen, M., Charnay, P., Champagnat, J., Fortin, G.: Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nature Neurosci. 12, 1028–1036 (2009)CrossRefGoogle Scholar
  25. 25.
    Wittmeier, S., Song, G., Duffin, J., Poon, C.S.: Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proc. Natl. Acad. Sci. U. S. A. 105, 18000–18008 (2008)CrossRefGoogle Scholar
  26. 26.
    Yu, L., De Mazancourt, M., Hess, A., Ashadi, F.R., Klein, I., Mal, H., Courbage, M., Mangin, L.: Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease. Hum. Brain Mapp. 37, 2736–2754 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes Complexes (MSC)UMR 7057 CNRS et Université Paris 7 - Denis DiderotParis Cedex 13France
  2. 2.Physiology Dpt, APHP, Bichat HospitalParis 7 UniversityParisFrance

Personalised recommendations