The Variational Principles of Cognition

Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 20)

Abstract

This chapter provides a theoretical perspective on a dynamics, from the perspective of the free-energy principle. This variational principle offers a natural explanation for neuronal activity that is formulated in terms of dynamical systems and attracting sets. We will see that the free-energy principle emerges when we consider the ensemble dynamics of any pattern forming, self-organizing system. When we look closely what this principle implies for the behavior of systems like the brain, one finds a fairly simple explanation for active inference and the Bayesian brain hypothesis. Within the Bayesian brain framework, the ensuing dynamics can be separated, in a principled way, into those serving perceptual inference, learning and behavior. Dynamics here are central; not only to an understanding the nature of self-organizing systems but also to explain the adaptive nature of neuronal dynamics and plasticity in terms of optimization. The special focus of this chapter is on the pre-eminent role of heteroclinic cycles in providing deep and dynamic (generative) models of the sensorium; particularly, the sensations that we generate ourselves through movement. In what follows, we will briefly rehearse the basic theory and illustrate its implications using simulations of action (handwriting)—and its observation.

Keywords

Free energy Entropy Neural activity Bayesian brain Dynamics 

Notes

Acknowledgements

I am indebted to Mikhail Rabinovich for his guidance and insights into winnerless competition and its formulation in terms of generalized Lotka–Volterra systems that underly the work presented in this chapter. The Wellcome Trust funded this work.

References

  1. 1.
    Adams, R.A., Shipp, S., Friston, K.J.: Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013)CrossRefGoogle Scholar
  2. 2.
    Afraimovich, V., Tristan, I., Huerta, R., Rabinovich, M.I.: Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Chaos 18, 043103 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ashby, W.R.: Principles of the self-organizing dynamic system. J. Gen. Psychol. 37, 125–128 (1947)CrossRefGoogle Scholar
  4. 4.
    Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J.: Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012)CrossRefGoogle Scholar
  5. 5.
    Battaglia, F.P., Sutherland, G.R., McNaughton, B.L.: Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J. Neurosci. 24 (19), 4541–50 (2004)CrossRefGoogle Scholar
  6. 6.
    Bernard, C.: Lectures on the Phenomena Common to Animals and Plants, trans Hoff, H.E., Guillemin, R., Guillemin, L. Springfield, IL: Charles C Thomas (1974). ISBN 978–0398028572Google Scholar
  7. 7.
    Bick, C., Rabinovich, M.I.: Dynamical origin of the effective storage capacity in the brain’s working memory. Phys. Rev. Lett. 103, 218101 (2009)CrossRefGoogle Scholar
  8. 8.
    Burgess, N., Barry, C., O’Keefe, J.: An oscillatory interference model of grid cell firing. Hippocampus 17 (9), 801–812 (2007)CrossRefGoogle Scholar
  9. 9.
    Camerer, C.F.: Behavioural studies of strategic thinking in games. Trends Cogn. Sci. 7 (5), 225–231 (2003)CrossRefGoogle Scholar
  10. 10.
    Carhart-Harris, R.L., Friston, K.J.: The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133 (Pt 4), 1265–83 (2010)CrossRefGoogle Scholar
  11. 11.
    Clark, A.: The many faces of precision. Front Psychol. 4, 270 (2013)Google Scholar
  12. 12.
    Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013)CrossRefGoogle Scholar
  13. 13.
    Conant, R.C., Ashby, W.R.: Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1, 89–97 (1970)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Daw, N.D., Doya, K.: The computational neurobiology of learning and reward. Curr. Opin. Neurobiol. 16 (2), 199–204 (2006)CrossRefGoogle Scholar
  15. 15.
    Dayan, P., Hinton, G.E., Neal, R.M.: The Helmholtz machine. Neural Comput. 7, 889–904 (1995)CrossRefGoogle Scholar
  16. 16.
    Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–80 (1992)CrossRefGoogle Scholar
  17. 17.
    Dragoi, G., Buzsáki, G.: Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50 (1), 145–57 (2006)CrossRefGoogle Scholar
  18. 18.
    Evans, D.J.: A non-equilibrium free-energy theorem for deterministic systems. Mol. Phys. 101, 15551–1554 (2003)CrossRefGoogle Scholar
  19. 19.
    Feldman, H., Friston, K.J.: Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010)CrossRefGoogle Scholar
  20. 20.
    Feynman, R.P.: Statistical Mechanics. Benjamin, Reading, MA (1972)Google Scholar
  21. 21.
    Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)CrossRefGoogle Scholar
  22. 22.
    Friston, K.J.: A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–36 (2005)CrossRefGoogle Scholar
  23. 23.
    Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11 (2), 127–38 (2010)CrossRefGoogle Scholar
  24. 24.
    Friston, K.: Life as we know it. J. R. Soc. Interface 10, 20130475 (2013)CrossRefGoogle Scholar
  25. 25.
    Friston, K., Daunizeau, J., Kiebel, S.: Active inference or reinforcement learning? PLoS One 4 (7), e6421 (2009)CrossRefGoogle Scholar
  26. 26.
    Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol Cybern. 102 (3), 227–60 (2010)CrossRefGoogle Scholar
  27. 27.
    Gallese, V., Goldman, A.: Mirror-neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501 (1998)CrossRefGoogle Scholar
  28. 28.
    Geisler, C., Diba, K., Pastalkova, E., Mizuseki, K., Royer, S., Buzsáki, G.: Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc. Natl. Acad. Sci. USA 107 (17), 7957–62 (2010)CrossRefGoogle Scholar
  29. 29.
    Gregory, R.L.: Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B 290, 181–197 (1980)CrossRefGoogle Scholar
  30. 30.
    Grist, M.: Changing the Subject. RSA. www.thesocialbrain.wordpress.com, pp. 74–80 (2010)
  31. 31.
    Haken, H.: Synergetics: an introduction. In: Non-equilibrium Phase Transition and Self-Organization in Physics, Chemistry and Biology. 3rd edn. Springer, New York (1983)Google Scholar
  32. 32.
    von Helmholtz, H.: Concerning the perceptions in general. In: Treatise on Physiological Optics, vol. III, 3rd edn. (translated by J. P. C. Southall 1925 Opt. Soc. Am. Section 26, reprinted New York: Dover, 1962) (1866)Google Scholar
  33. 33.
    Hinton, G.E., van Cramp, D.: Keeping neural networks simple by minimizing the description length of weights. In: Proceedings of COLT-93, pp. 5–13 (1993)Google Scholar
  34. 34.
    Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  35. 35.
    Hohwy, J.: The self-evidencing brain. Noûs, n/a-n/a (2014)Google Scholar
  36. 36.
    Huang, G.: Is this a unified theory of the brain? New Scientist. Magazine issue 2658, 23 May 2008Google Scholar
  37. 37.
    Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  38. 38.
    Kersten, D., Mamassian, P., Yuille, A.: Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004)CrossRefGoogle Scholar
  39. 39.
    Kiebel, S.J., von Kriegstein, K., Daunizeau, J., Friston, K.J.: Recognizing sequences of sequences. PLoS Comput. Biol. 5 (8), e1000464 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27 (12), 712–9 (2004)CrossRefGoogle Scholar
  41. 41.
    Kropotova, D., Vetrovb, D.: General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence. Pattern Recognit Image Anal. 19 (3), 447–455 (2009)CrossRefGoogle Scholar
  42. 42.
    Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Course of Theoretical Physics, vol. 10, 3rd edn. Pergamon, London (1981). ISBN 0-08-026480-8 ISBN 0-7506-2635-6Google Scholar
  43. 43.
    MacKay, D.J.C.: Free-energy minimization algorithm for decoding and cryptoanalysis. Electron. Lett. 31, 445–447 (1995)CrossRefGoogle Scholar
  44. 44.
    Mumford, D.: On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–51 (1992)Google Scholar
  45. 45.
    Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants’. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355–368. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  46. 46.
    Nicolis, G., Prigogine, I.: Self-organization in non-equilibrium systems, p24. Wiley, New York (1977)MATHGoogle Scholar
  47. 47.
    O’Keefe, J.: Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9 (4), 352–64 (1999)CrossRefGoogle Scholar
  48. 48.
    Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321, 48–50 (2008)Google Scholar
  49. 49.
    Rabinovich, M.I., Afraimovich, V.S., Varona, P.: Heteroclinic binding. Dyn. Syst. Int. J. 25, 433–442 (2010)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Rabinovich, M.I., Afraimovich, V.S., Bick, V., Varona, P.: Information flow dynamics in the brain. Phys. Life Rev. 9 (1), 51–73 (2012)CrossRefGoogle Scholar
  51. 51.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nature Neurosci. 2, 79–87 (1998)CrossRefGoogle Scholar
  52. 52.
    Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory, pp. 64–99. Appleton Century Crofts, New York (1972)Google Scholar
  53. 53.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–92 (2004).CrossRefGoogle Scholar
  54. 54.
    Sella, G., Hirsh, A.E.: The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA 102 (27), 9541–6 (2005)CrossRefGoogle Scholar
  55. 55.
    Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88 (2), 135–70 (1981)CrossRefGoogle Scholar
  56. 56.
    Thornton, C.: Some puzzles relating to the free-energy principle: comment on Friston. Trends Cogn. Sci. 14 (2), 53–4; author reply 54–5; (2010)Google Scholar
  57. 57.
    Tsodyks, M.: Attractor neural network models of spatial maps in hippocampus. Hippocampus 9 (4), 481–9 (1999)CrossRefGoogle Scholar
  58. 58.
    Varona, P., Levi, R., Arshavsky, Y.I., Rabinovich, M.I., Selverston, A.I.: Competing sensory neurons and motor rhythm coordination. Neurocomputing 58, 549–554 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK

Personalised recommendations