Skip to main content

A Comparison Between Quantum Transport and Band Structure Unfolding in Defected Graphene Nanoribbons

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions
  • 739 Accesses

Abstract

This article considers a graphene-based quasi-one-dimensional system and explores the impact of structural perturbations on the electronic and transport properties of the material. Two phenomenologically different quantum mechanical approaches are used to describe the perturbation, namely the spectral weight of the unfolded band structure and the transmission coefficient of the propagated electrons. We show that these two descriptions present strong qualitative similarities and yield complementary information for the understanding of the induced electronic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007). DOI 10.1038/nmat1849

  2. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Nano Lett. 11(6), 2396 (2011).DOI 10.1021/nl200758b

  3. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotech. 3(8), 491 (2008). DOI 10.1038/nnano.2008.199

  4. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A.T. Ibrahimi, Z. Jiang, E. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer, Nature 56, 349 (2014). DOI 10.1038/nature12952

  5. L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Nano Lett. 16(2), 1387 (2016). DOI 10.1021/acs.nanolett.5b04840

  6. Y. Zhang, Y. Tan, H.L. Stormer, P. Kim, Nature 438(7065), 201 (2005). DOI 10.1038/nature04235

  7. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315(5817), 1379 (2007). DOI 10.1126/science.1137201

  8. K.S. Novoselov, E. McCann, S. Morozov, V. Falko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006). DOI 10.1038/nphys245

  9. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005). DOI 10.1103/PhysRevLett.95.226801

  10. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005). DOI 10.1103/PhysRevLett.95.146801

  11. Y.M. Lin, V. Perebeinos, Z. Chen, P. Avouris, Phys. Rev. B 78, 161409 (2008). DOI 10.1103/PhysRevB.78.161409

  12. H. González-Herrero, J.M. Gómez-Rodríguez, P. Mallet, M. Moaied, J.J. Palacios, C. Salgado, M.M. Ugeda, J.Y. Veuillen, F. Yndurain, I. Brihuega, Science 352(6284), 437 (2016).DOI 10.1126/science.aad8038

  13. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 81, 085427 (2010).DOI 10.1103/PhysRevB.81.085427

  14. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  15. A. La Magna, I. Deretzis, G. Forte, R. Pucci, Phys. Rev. B 80, 195413 (2009). DOI 10.1103/PhysRevB.80.195413

  16. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 82, 161413 (2010).DOI 10.1103/PhysRevB.82.161413

  17. F. Giannazzo, I. Deretzis, A. La Magna, F. Roccaforte, R. Yakimova, Phys. Rev. B 86, 235422 (2012). DOI 10.1103/PhysRevB.86.235422

  18. W. Ku, T. Berlijn, C.C. Lee, Phys. Rev. Lett. 104, 216401 (2010). DOI 10.1103/PhysRevLett.104.216401

  19. V. Popescu, A. Zunger, Phys. Rev. Lett. 104, 236403 (2010). DOI 10.1103/PhysRevLett.104.236403

  20. V. Popescu, A. Zunger, Phys. Rev. B 85, 085201 (2012). DOI 10.1103/PhysRevB.85.085201

  21. P.V.C. Medeiros, S. Stafström, J. Björk, Phys. Rev. B 89, 041407 (2014). DOI 10.1103/PhysRevB.89.041407

  22. T.B. Boykin, G. Klimeck, Phys. Rev. B 71, 115215 (2005). DOI 10.1103/PhysRevB.71.115215

  23. P.B. Allen, T. Berlijn, D.A. Casavant, J.M. Soler, Phys. Rev. B 87, 085322 (2013).DOI 10.1103/PhysRevB.87.085322

  24. C.C. Lee, Y. Yamada-Takamura, T. Ozaki, J. Phys.: Cond. Matter 25(34), 345501 (2013).DOI 10.1088/0953-8984/25/34/345501

  25. M.W. Haverkort, I.S. Elfimov, G.A. Sawatzky, Electronic structure and self energies of randomly substituted solids using density functional theory and model calculations (2011). Preprint arXiv:1109.4036 [cond-mat.mtrl-sci]

  26. I. Deretzis, G. Calogero, G.G.N. Angilella, A. La Magna, Europhys. Lett. 107(2), 27006 (2014). DOI 10.1209/0295-5075/107/27006

  27. C. Bena, G. Montambaux, New J. Phys. 11(9), 095003 (2009). DOI 10.1088/1367-2630/11/9/095003

  28. I. Deretzis, G. Forte, A. Grassi, A. La Magna, G. Piccitto, R. Pucci, J. Phys.: Cond. Matter 22(9), 095504 (2010). DOI 10.1088/0953-8984/22/9/095504

Download references

Acknowledgements

The authors would like to thank Professor Renato Pucci for discussions, advice and scientific collaboration throughout the past decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Deretzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deretzis, I., La Magna, A. (2017). A Comparison Between Quantum Transport and Band Structure Unfolding in Defected Graphene Nanoribbons. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_13

Download citation

Publish with us

Policies and ethics