Abstract
We present a theory of the cavity quantum electrodynamics of graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to verify the impossibility of super-radiant instability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007). DOI 10.1038/nmat1849
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). DOI 10.1103/RevModPhys.81.109
M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nature Photonics 4(9), 611 (2010). DOI 10.1038/nphoton.2010.186
N.M.R. Peres, Rev. Mod. Phys. 82(3), 2673 (2010). DOI 10.1103/RevModPhys.82.2673
F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11(8), 3370 (2011). DOI 10.1021/nl201771h
A.N. Grigorenko, M. Polini, K.S. Novoselov, Nature Photonics 6(11), 749 (2012). DOI 10.1038/nphoton.2012.262
M. Engel, M. Steiner, A. Lombardo, A.C. Ferrari, H.v. Löhneysen, P. Avouris, R. Krupke, Nature Commun. 3, 906 (2012). DOI 10.1038/ncomms1911
M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. 12(6), 2773 (2012). DOI 10.1021/nl204512x
J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001). DOI 10.1103/RevModPhys.73.565
G. Scalari, C. Maissen, D. Turčinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist, Science 335(6074), 1323 (2012). DOI 10.1126/science.1216022
F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J.W. Choi, H.G. Park, M. Beck, J. Faist, Nano Lett. 13(7), 3193 (2013). DOI 10.1021/nl4012547
T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Nature Commun. 2, 458 (2011). DOI 10.1038/ncomms1464
K.S. Novoselov, Rev. Mod. Phys. 83, 837 (2011). DOI 10.1103/RevModPhys.83.837
K.S. Novoselov, A.H. Castro Neto, Physica Scripta 2012(T146), 014006 (2012). DOI 10.1088/0031-8949/2012/T146/014006
F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Materials Today 15(12), 564 (2012). DOI 10.1016/S1369-7021(13)70014-2
A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013). DOI 10.1038/nature12385
L.A. Ponomarenko, A.K. Geim, A.A. Zhukov, R. Jalil, S.V. Morozov, K.S. Novoselov, I.V. Grigorieva, E.H. Hill, V.V. Cheianov, V.I. Fal’ko, K. Watanabe, T. Taniguchi, R.V. Gorbachev, Nat. Phys. 7(12), 958 (2011). DOI 10.1038/nphys2114
R.V. Gorbachev, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T. Tudorovskiy, I.V. Grigorieva, A.H. MacDonald, S.V. Morozov, K. Watanabe, T. Taniguchi, L.A. Ponomarenko, Nat Phys 8(12), 896 (2012). DOI 10.1038/nphys2441
L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335(6071), 947 (2012). DOI 10.1126/science.1218461
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nature Nanotech. 7(11), 699 (2012). DOI 10.1038/nnano.2012.193
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, K.S. Novoselov, Science 340(6138), 1311 (2013). DOI 10.1126/science.1235547
A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Phys. Rev. B 86(8), 085421 (2012). DOI 10.1103/PhysRevB.86.085421
A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L.N. Pfeiffer, K.W. West, A.C. Ferrari, M. Polini, V. Pellegrini, Nature Commun. 5, 5824 (2014). DOI 10.1038/ncomms6824
R.H. Dicke, Phys. Rev. 93, 99 (1954). DOI 10.1103/PhysRev.93.99
K. Hepp, E.H. Lieb, Ann. Phys. (N.Y.) 76(2), 360 (1973). DOI 10.1016/0003-4916(73)90039-0
R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer, New York, 1990)
A.H. MacDonald, in Proceedings of the Les Houches Summer School on Mesoscopic Physics, ed. by E. Akkermans, G. Montambeaux, J.L. Pichard (Elsevier, Amsterdam, 1995)
G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)
D. Hagenmüller, S. De Liberato, C. Ciuti, Phys. Rev. B 81, 235303 (2010). DOI 10.1103/PhysRevB.81.235303
D. Pines, P. Noziéres, The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966)
K. Rzażewski, K. Wódkiewicz, W. Żakowicz, Phys. Rev. Lett. 35, 432 (1975). DOI 10.1103/PhysRevLett.35.432
I. Bialynicki-Birula, K. Rzazewski, Phys. Rev. A 19, 301 (1979). DOI 10.1103/PhysRevA.19.301
K. Gawedzki, K. Rzazewski, Phys. Rev. A 23, 2134 (1981). DOI 10.1103/PhysRevA.23.2134
F.M.D. Pellegrino, L. Chirolli, R. Fazio, V. Giovannetti, M. Polini, Phys. Rev. B 89, 165406 (2014). DOI 10.1103/PhysRevB.89.165406
M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011). DOI 10.1103/RevModPhys.83.1193
L. Chirolli, M. Polini, V. Giovannetti, A.H. MacDonald, Phys. Rev. Lett. 109, 267404 (2012). DOI 10.1103/PhysRevLett.109.267404
D.R. Hamann, A.W. Overhauser, Phys. Rev. 143, 183 (1966). DOI 10.1103/PhysRev.143.183
J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149(2), 491 (1966). DOI 10.1103/PhysRev.149.491
S. Bravyi, D.P. DiVincenzo, D. Loss, Ann. Phys. (N.Y.) 326(10), 2793 (2011). DOI 10.1016/j.aop.2011.06.004
A. Principi, M. Polini, G. Vignale, Phys. Rev. B 80, 075418 (2009). DOI 10.1103/PhysRevB.80.075418
D. Hagenmüller, C. Ciuti, Phys. Rev. Lett. 109, 267403 (2012). DOI 10.1103/PhysRevLett.109.267403
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Pellegrino, F.M.D. (2017). Generalized Dicke Model of Graphene Cavity QED. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-53664-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53663-7
Online ISBN: 978-3-319-53664-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)