Skip to main content

Generalized Dicke Model of Graphene Cavity QED

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions
  • 741 Accesses

Abstract

We present a theory of the cavity quantum electrodynamics of graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to verify the impossibility of super-radiant instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007). DOI 10.1038/nmat1849

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). DOI 10.1103/RevModPhys.81.109

  3. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  4. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nature Photonics 4(9), 611 (2010). DOI 10.1038/nphoton.2010.186

    Article  ADS  Google Scholar 

  5. N.M.R. Peres, Rev. Mod. Phys. 82(3), 2673 (2010). DOI 10.1103/RevModPhys.82.2673

    Article  ADS  Google Scholar 

  6. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11(8), 3370 (2011). DOI 10.1021/nl201771h

    Article  ADS  Google Scholar 

  7. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nature Photonics 6(11), 749 (2012). DOI 10.1038/nphoton.2012.262

    Article  ADS  Google Scholar 

  8. M. Engel, M. Steiner, A. Lombardo, A.C. Ferrari, H.v. Löhneysen, P. Avouris, R. Krupke, Nature Commun. 3, 906 (2012). DOI 10.1038/ncomms1911

  9. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. 12(6), 2773 (2012). DOI 10.1021/nl204512x

    Article  ADS  Google Scholar 

  10. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001). DOI 10.1103/RevModPhys.73.565

    Article  ADS  Google Scholar 

  11. G. Scalari, C. Maissen, D. Turčinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist, Science 335(6074), 1323 (2012). DOI 10.1126/science.1216022

    Article  ADS  Google Scholar 

  12. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J.W. Choi, H.G. Park, M. Beck, J. Faist, Nano Lett. 13(7), 3193 (2013). DOI 10.1021/nl4012547

    Article  ADS  Google Scholar 

  13. T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Nature Commun. 2, 458 (2011). DOI 10.1038/ncomms1464

    Article  ADS  Google Scholar 

  14. K.S. Novoselov, Rev. Mod. Phys. 83, 837 (2011). DOI 10.1103/RevModPhys.83.837

    Article  ADS  Google Scholar 

  15. K.S. Novoselov, A.H. Castro Neto, Physica Scripta 2012(T146), 014006 (2012). DOI 10.1088/0031-8949/2012/T146/014006

  16. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Materials Today 15(12), 564 (2012). DOI 10.1016/S1369-7021(13)70014-2

    Article  Google Scholar 

  17. A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013). DOI 10.1038/nature12385

    Article  Google Scholar 

  18. L.A. Ponomarenko, A.K. Geim, A.A. Zhukov, R. Jalil, S.V. Morozov, K.S. Novoselov, I.V. Grigorieva, E.H. Hill, V.V. Cheianov, V.I. Fal’ko, K. Watanabe, T. Taniguchi, R.V. Gorbachev, Nat. Phys. 7(12), 958 (2011). DOI 10.1038/nphys2114

  19. R.V. Gorbachev, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T. Tudorovskiy, I.V. Grigorieva, A.H. MacDonald, S.V. Morozov, K. Watanabe, T. Taniguchi, L.A. Ponomarenko, Nat Phys 8(12), 896 (2012). DOI 10.1038/nphys2441

    Article  Google Scholar 

  20. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335(6071), 947 (2012). DOI 10.1126/science.1218461

  21. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nature Nanotech. 7(11), 699 (2012). DOI 10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  22. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, K.S. Novoselov, Science 340(6138), 1311 (2013). DOI 10.1126/science.1235547

  23. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Phys. Rev. B 86(8), 085421 (2012). DOI 10.1103/PhysRevB.86.085421

    Article  ADS  Google Scholar 

  24. A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L.N. Pfeiffer, K.W. West, A.C. Ferrari, M. Polini, V. Pellegrini, Nature Commun. 5, 5824 (2014). DOI 10.1038/ncomms6824

  25. R.H. Dicke, Phys. Rev. 93, 99 (1954). DOI 10.1103/PhysRev.93.99

    Article  ADS  Google Scholar 

  26. K. Hepp, E.H. Lieb, Ann. Phys. (N.Y.) 76(2), 360 (1973). DOI 10.1016/0003-4916(73)90039-0

  27. R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer, New York, 1990)

    Book  Google Scholar 

  28. A.H. MacDonald, in Proceedings of the Les Houches Summer School on Mesoscopic Physics, ed. by E. Akkermans, G. Montambeaux, J.L. Pichard (Elsevier, Amsterdam, 1995)

    Google Scholar 

  29. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  30. D. Hagenmüller, S. De Liberato, C. Ciuti, Phys. Rev. B 81, 235303 (2010). DOI 10.1103/PhysRevB.81.235303

    Article  ADS  Google Scholar 

  31. D. Pines, P. Noziéres, The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966)

    MATH  Google Scholar 

  32. K. Rzażewski, K. Wódkiewicz, W. Żakowicz, Phys. Rev. Lett. 35, 432 (1975). DOI 10.1103/PhysRevLett.35.432

    Article  ADS  Google Scholar 

  33. I. Bialynicki-Birula, K. Rzazewski, Phys. Rev. A 19, 301 (1979). DOI 10.1103/PhysRevA.19.301

    Article  ADS  Google Scholar 

  34. K. Gawedzki, K. Rzazewski, Phys. Rev. A 23, 2134 (1981). DOI 10.1103/PhysRevA.23.2134

    Article  ADS  MathSciNet  Google Scholar 

  35. F.M.D. Pellegrino, L. Chirolli, R. Fazio, V. Giovannetti, M. Polini, Phys. Rev. B 89, 165406 (2014). DOI 10.1103/PhysRevB.89.165406

    Article  ADS  Google Scholar 

  36. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011). DOI 10.1103/RevModPhys.83.1193

    Article  ADS  Google Scholar 

  37. L. Chirolli, M. Polini, V. Giovannetti, A.H. MacDonald, Phys. Rev. Lett. 109, 267404 (2012). DOI 10.1103/PhysRevLett.109.267404

    Article  ADS  Google Scholar 

  38. D.R. Hamann, A.W. Overhauser, Phys. Rev. 143, 183 (1966). DOI 10.1103/PhysRev.143.183

    Article  ADS  Google Scholar 

  39. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149(2), 491 (1966). DOI 10.1103/PhysRev.149.491

    Article  ADS  Google Scholar 

  40. S. Bravyi, D.P. DiVincenzo, D. Loss, Ann. Phys. (N.Y.) 326(10), 2793 (2011). DOI 10.1016/j.aop.2011.06.004

  41. A. Principi, M. Polini, G. Vignale, Phys. Rev. B 80, 075418 (2009). DOI 10.1103/PhysRevB.80.075418

    Article  ADS  Google Scholar 

  42. D. Hagenmüller, C. Ciuti, Phys. Rev. Lett. 109, 267403 (2012). DOI 10.1103/PhysRevLett.109.267403

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. D. Pellegrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pellegrino, F.M.D. (2017). Generalized Dicke Model of Graphene Cavity QED. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_12

Download citation

Publish with us

Policies and ethics