Skip to main content

Nonequilibrium Steady States and Electron Transport in Molecular Systems

  • 611 Accesses

Abstract

We discuss theoretically the correlation between atomic configurations and coherent stationary electronic transport in molecular systems contacted with metallic electrodes in stationary conditions. The nonequilibrium Green’s function formalism is discussed as preliminary theoretical framework which allows, by means of a suitable mapping of electron-only Hamiltonians, the bridging between the atomic structure of the molecule+contacts system and the electron dynamics. Contrarily to the equilibrium case, the lack of a variational principle in nonequilibrium conditions, even when the stationary state is achieved, does not permit a correct formal approach to the correlation between the electron state in a biased molecular device and the molecule’s configuration. A conjecture is proposed to extend the free energy Mermin’s functional, and the related variational procedure, for a system in contact with two electron reservoirs ruled by two different electrochemical potentials. Results of the proposed variational procedure are presented for realistic molecular systems, and the predicted anomalous effects of the biasing on both the atomic configurations and the transport features are discussed.

Keywords

  • Variational Principle
  • Molecular Device
  • Transmission Probability
  • Variational Variable
  • Negative Differential Resistance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-53664-4_10
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-53664-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8

References

  1. B. Xu, Y. Dubi, J. Phys.: Condens. Matter 27(26), 263202 (2015). DOI 10.1088/0953-8984/27/26/263202

    ADS  Google Scholar 

  2. F. Demir, G. Kirczenow, J. Chem. Phys. 136(1), 014703 (2012). DOI 10.1063/1.3671455

    CrossRef  ADS  Google Scholar 

  3. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005). DOI10.1103/PhysRevLett.95.226801

  4. A. La Magna, I. Deretzis, Phys. Rev. Lett. 99, 136404 (2007). DOI 10.1103/PhysRevLett.99.136404

    CrossRef  ADS  Google Scholar 

  5. A. La Magna, I. Deretzis, V. Privitera, Eur. Phys. J. B 70(3), 311 (2009). DOI 10.1140/epjb/e2009-00220-6

    CrossRef  ADS  Google Scholar 

  6. M. Galperin, M.A. Ratner, A. Nitzan, A. Troisi, Science 319(5866), 1056 (2008). DOI 10.1126/science.1146556

    CrossRef  ADS  Google Scholar 

  7. M. Galperin, M.A. Ratner, A. Nitzan, Nano Lett. 5(1), 125 (2005). DOI 10.1021/nl048216c

    CrossRef  ADS  Google Scholar 

  8. A. La Magna, I. Deretzis, Physica E 40(7), 2289 (2008). DOI 10.1016/j.physe.2007.09.088. Proceedings of the E-MRS 2007 Symposia L and M: Electron Transport in Low-Dimensional Carbon Structures and Science and Technology of Nanotubes and Nanowires

  9. I. Deretzis, A. La Magna, Eur. Phys. J. B 81(1), 15 (2011). DOI 10.1140/epjb/e2011-20134-x

    CrossRef  ADS  Google Scholar 

  10. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  11. A. La Magna, I. Deretzis, G. Forte, R. Pucci, Phys. Rev. B 80, 195413 (2009). DOI 10.1103/PhysRevB.80.195413

    CrossRef  ADS  Google Scholar 

  12. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 81, 085427 (2010). DOI 10.1103/PhysRevB.81.085427

    CrossRef  ADS  Google Scholar 

  13. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 82, 161413 (2010). DOI 10.1103/PhysRevB.82.161413

    CrossRef  ADS  Google Scholar 

  14. F. Giannazzo, I. Deretzis, A. La Magna, F. Roccaforte, R. Yakimova, Phys. Rev. B 86, 235422 (2012). DOI 10.1103/PhysRevB.86.235422

    CrossRef  ADS  Google Scholar 

  15. S. Datta, Superlattices and Microstructures 28(4), 253 (2000). DOI 10.1006/spmi.2000.0920

    CrossRef  ADS  Google Scholar 

  16. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)

    CrossRef  MATH  Google Scholar 

  17. I. Deretzis, A. La Magna, J. Chem. Phys. 128(16), 164706 (2008). DOI 10.1063/1.2905216

    CrossRef  ADS  Google Scholar 

  18. Y.M. Lin, V. Perebeinos, Z. Chen, P. Avouris, Phys. Rev. B 78, 161409 (2008). DOI 10.1103/PhysRevB.78.161409

    CrossRef  ADS  Google Scholar 

  19. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). DOI 10.1103/RevModPhys.81.109

  20. R.Y. Oeiras, F.M. Araújo-Moreira, E.Z. da Silva, Phys. Rev. B 80, 073405 (2009). DOI 10.1103/PhysRevB.80.073405

    CrossRef  ADS  Google Scholar 

  21. N.D. Mermin, Phys. Rev. 137, A1441 (1965). DOI 10.1103/PhysRev.137.A1441

    CrossRef  ADS  Google Scholar 

  22. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988). DOI 10.1103/RevModPhys.60.781

    CrossRef  ADS  Google Scholar 

  23. A. La Magna, R. Pucci, Phys. Rev. B 53, 8449 (1996). DOI 10.1103/PhysRevB.53.8449

    CrossRef  ADS  Google Scholar 

  24. A. La Magna, R. Pucci, Phys. Rev. B 55, 6296 (1997). DOI 10.1103/PhysRevB.55.6296

    CrossRef  ADS  Google Scholar 

  25. A. La Magna, R. Pucci, Phys. Rev. B 55, 14886 (1997). DOI 10.1103/PhysRevB.55.14886

    CrossRef  ADS  Google Scholar 

  26. G. Vignale, M. Di Ventra, Phys. Rev. B 79, 014201 (2009). DOI 10.1103/PhysRevB.79.014201

    CrossRef  ADS  Google Scholar 

  27. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002). DOI 10.1103/PhysRevB.65.165401

    CrossRef  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by FLAG-ERA JTC project Graphene heterostructures with Nitrides for high frequency Electronics (GraNitE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Deretzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deretzis, I., Lombardo, S.F., Angilella, G.G.N., Pucci, R., La Magna, A. (2017). Nonequilibrium Steady States and Electron Transport in Molecular Systems. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_10

Download citation