Abstract
We discuss theoretically the correlation between atomic configurations and coherent stationary electronic transport in molecular systems contacted with metallic electrodes in stationary conditions. The nonequilibrium Green’s function formalism is discussed as preliminary theoretical framework which allows, by means of a suitable mapping of electron-only Hamiltonians, the bridging between the atomic structure of the molecule+contacts system and the electron dynamics. Contrarily to the equilibrium case, the lack of a variational principle in nonequilibrium conditions, even when the stationary state is achieved, does not permit a correct formal approach to the correlation between the electron state in a biased molecular device and the molecule’s configuration. A conjecture is proposed to extend the free energy Mermin’s functional, and the related variational procedure, for a system in contact with two electron reservoirs ruled by two different electrochemical potentials. Results of the proposed variational procedure are presented for realistic molecular systems, and the predicted anomalous effects of the biasing on both the atomic configurations and the transport features are discussed.
Keywords
- Variational Principle
- Molecular Device
- Transmission Probability
- Variational Variable
- Negative Differential Resistance
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options








References
B. Xu, Y. Dubi, J. Phys.: Condens. Matter 27(26), 263202 (2015). DOI 10.1088/0953-8984/27/26/263202
F. Demir, G. Kirczenow, J. Chem. Phys. 136(1), 014703 (2012). DOI 10.1063/1.3671455
C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005). DOI10.1103/PhysRevLett.95.226801
A. La Magna, I. Deretzis, Phys. Rev. Lett. 99, 136404 (2007). DOI 10.1103/PhysRevLett.99.136404
A. La Magna, I. Deretzis, V. Privitera, Eur. Phys. J. B 70(3), 311 (2009). DOI 10.1140/epjb/e2009-00220-6
M. Galperin, M.A. Ratner, A. Nitzan, A. Troisi, Science 319(5866), 1056 (2008). DOI 10.1126/science.1146556
M. Galperin, M.A. Ratner, A. Nitzan, Nano Lett. 5(1), 125 (2005). DOI 10.1021/nl048216c
A. La Magna, I. Deretzis, Physica E 40(7), 2289 (2008). DOI 10.1016/j.physe.2007.09.088. Proceedings of the E-MRS 2007 Symposia L and M: Electron Transport in Low-Dimensional Carbon Structures and Science and Technology of Nanotubes and Nanowires
I. Deretzis, A. La Magna, Eur. Phys. J. B 81(1), 15 (2011). DOI 10.1140/epjb/e2011-20134-x
S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997)
A. La Magna, I. Deretzis, G. Forte, R. Pucci, Phys. Rev. B 80, 195413 (2009). DOI 10.1103/PhysRevB.80.195413
I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 81, 085427 (2010). DOI 10.1103/PhysRevB.81.085427
I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 82, 161413 (2010). DOI 10.1103/PhysRevB.82.161413
F. Giannazzo, I. Deretzis, A. La Magna, F. Roccaforte, R. Yakimova, Phys. Rev. B 86, 235422 (2012). DOI 10.1103/PhysRevB.86.235422
S. Datta, Superlattices and Microstructures 28(4), 253 (2000). DOI 10.1006/spmi.2000.0920
S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)
I. Deretzis, A. La Magna, J. Chem. Phys. 128(16), 164706 (2008). DOI 10.1063/1.2905216
Y.M. Lin, V. Perebeinos, Z. Chen, P. Avouris, Phys. Rev. B 78, 161409 (2008). DOI 10.1103/PhysRevB.78.161409
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). DOI 10.1103/RevModPhys.81.109
R.Y. Oeiras, F.M. Araújo-Moreira, E.Z. da Silva, Phys. Rev. B 80, 073405 (2009). DOI 10.1103/PhysRevB.80.073405
N.D. Mermin, Phys. Rev. 137, A1441 (1965). DOI 10.1103/PhysRev.137.A1441
A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988). DOI 10.1103/RevModPhys.60.781
A. La Magna, R. Pucci, Phys. Rev. B 53, 8449 (1996). DOI 10.1103/PhysRevB.53.8449
A. La Magna, R. Pucci, Phys. Rev. B 55, 6296 (1997). DOI 10.1103/PhysRevB.55.6296
A. La Magna, R. Pucci, Phys. Rev. B 55, 14886 (1997). DOI 10.1103/PhysRevB.55.14886
G. Vignale, M. Di Ventra, Phys. Rev. B 79, 014201 (2009). DOI 10.1103/PhysRevB.79.014201
M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002). DOI 10.1103/PhysRevB.65.165401
Acknowledgements
This work is partially supported by FLAG-ERA JTC project Graphene heterostructures with Nitrides for high frequency Electronics (GraNitE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Deretzis, I., Lombardo, S.F., Angilella, G.G.N., Pucci, R., La Magna, A. (2017). Nonequilibrium Steady States and Electron Transport in Molecular Systems. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-53664-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53663-7
Online ISBN: 978-3-319-53664-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)