Advertisement

Molecular Pathogenesis of Prostate Cancer

  • Maria A. SmolleEmail author
  • Johannes Haybaeck
  • Martin Pichler
Chapter
  • 636 Downloads

Abstract

With a lifetime risk of 17%, prostate cancer is the second most common malignancy in men. Although the vast majority of patients will have an excellent prognosis, a rapid progression of disease with metastatic spread is seen in some. Therefore, therapy may vary from active surveillance over hormone therapy and chemotherapy to radical prostatectomy. Thus, the molecular heterogeneity of prostate cancer is supposed to alter the tumour’s biological behaviour.

This section starts with a brief introduction of prostate cancer in order to give readers a quick overview. Main signalling pathways, genes and proteins involved in the molecular pathogenesis of prostate cancer will be discussed in the second part. One emphasis is placed on the interactions between the different proteins, genes and signalling pathways. Another focus is on the characterisation of the impact of aberrant molecular profiles on the prognosis of patients with prostate cancer.

Keywords

Prostate Cancer Androgen Receptor Prostate Cancer Cell Radical Prostatectomy MYCN Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Mitchell T, Neal DE. The genomic evolution of human prostate cancer. Br J Cancer. 2015;113(2):193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Heidegger I, Massoner P, Sampson N, Klocker H. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. Cancer Lett. 2015;367(2):113–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367(3):203–13.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Eble JN, Sauter G, Epstein JI, Sesterhenn IA. In: Kleihues P, Sobin LH, editors. World Health Organization classification of tumours. Lyon, France: IARC Press; 2002.Google Scholar
  6. 6.
    Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50(3):125–8.PubMedGoogle Scholar
  7. 7.
    Bill-Axelson A, Holmberg L, Ruutu M, Garmo H, Stark JR, Busch C, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2011;364(18):1708–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387(10013):70–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Parker C. Active surveillance: towards a new paradigm in the management of early prostate cancer. Lancet Oncol. 2004;5(2):101–6.PubMedCrossRefGoogle Scholar
  10. 10.
    James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–77.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Vale CL, Burdett S, Rydzewska LH, Albiges L, Clarke NW, Fisher D, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016;17(2):243–56.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424–33.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48.PubMedCrossRefGoogle Scholar
  14. 14.
    Wissing MD, van Leeuwen FW, van der Pluijm G, Gelderblom H. Radium-223 chloride: Extending life in prostate cancer patients by treating bone metastases. Clin Cancer Res. 2013;19(21):5822–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.PubMedCrossRefGoogle Scholar
  16. 16.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Bricard G, Bouzourene H, Martinet O, Rimoldi D, Halkic N, Gillet M, et al. Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J Immunol. 2005;174(3):1709–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Velazquez EF, Jungbluth AA, Yancovitz M, Gnjatic S, Adams S, O’Neill D, et al. Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)--correlation with prognostic factors. Cancer Immun. 2007;7:11.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tureci O, Chen YT, Sahin U, Gure AO, Zwick C, Villena C, et al. Expression of SSX genes in human tumors. Int J Cancer. 1998;77(1):19–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Gure AO, Wei IJ, Old LJ, Chen YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer. 2002;101(5):448–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Gure AO, Tureci O, Sahin U, Tsang S, Scanlan MJ, Jager E, et al. SSX: a multigene family with several members transcribed in normal testis and human cancer. Int J Cancer. 1997;72(6):965–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Cronwright G, Le Blanc K, Gotherstrom C, Darcy P, Ehnman M, Brodin B. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res. 2005;65(6):2207–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Dubovsky JA, McNeel DG. Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate. 2007;67(16):1781–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res. 2011;71(21):6785–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith HA, McNeel DG. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J Immunother. 2011;34(8):569–80.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Graham A. Developmental patterning. The Hox code out on a limb. Curr Biol. 1994;4(12):1135–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Economides KD, Capecchi MR. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development. 2003;130(10):2061–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Norris JD, Chang CY, Wittmann BM, Kunder RS, Cui H, Fan D, et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell. 2009;36(3):405–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res. 2004;64(24):9185–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hamid AR, Hoogland AM, Smit F, Jannink S, van Rijt-van de Westerlo C, Jansen CF, et al. The role of HOXC6 in prostate cancer development. Prostate. 2015;75(16):1868–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci U S A. 2004;101(17):6478–83.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yu Y, Davicioni E, Triche TJ, Merlino G. The homeoprotein Six1 transcriptionally activates multiple protumorigenic genes but requires Ezrin to promote metastasis. Cancer Res. 2006;66(4):1982–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Zeng J, Shi R, Cai CX, Liu XR, Song YB, Wei M, et al. Increased expression of Six1 correlates with progression and prognosis of prostate cancer. Cancer Cell Int. 2015;15:63.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev. 1999;20(4):501–34.PubMedGoogle Scholar
  37. 37.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Han EK, Lim JT, Arber N, Rubin MA, Xing WQ, Weinstein IB. Cyclin D1 expression in human prostate carcinoma cell lines and primary tumors. Prostate. 1998;35(2):95–101.PubMedCrossRefGoogle Scholar
  39. 39.
    Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol. 2003;23(17):6139–49.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen Y, Martinez LA, LaCava M, Coghlan L, Conti CJ. Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene. 1998;16(15):1913–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Takano Y, Kato Y, van Diest PJ, Masuda M, Mitomi H, Okayasu I. Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. Am J Pathol. 2000;156(2):585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mermelshtein A, Gerson A, Walfisch S, Delgado B, Shechter-Maor G, Delgado J, et al. Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer. 2005;93(3):338–45.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Virmani A, Rathi A, Heda S, Sugio K, Lewis C, Tonk V, et al. Aberrant methylation of the cyclin D2 promoter in primary small cell, nonsmall cell lung and breast cancers. Int J Cancer. 2003;107(3):341–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Kobayashi T, Nakamura E, Shimizu Y, Terada N, Maeno A, Kobori G, et al. Restoration of cyclin D2 has an inhibitory potential on the proliferation of LNCaP cells. Biochem Biophys Res Commun. 2009;387(1):196–201.PubMedCrossRefGoogle Scholar
  45. 45.
    Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9(10):1149–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol. 1998;159(3):941–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22(20):5323–35.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Malumbres M, Pellicer A. RAS pathways to cell cycle control and cell transformation. Front Biosci. 1998;3:d887–912.PubMedCrossRefGoogle Scholar
  49. 49.
    Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X, et al. MAGI-2 inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys. 2007;467(1):1–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Mahdian R, Nodouzi V, Asgari M, Rezaie M, Alizadeh J, Yousefi B, et al. Expression profile of MAGI2 gene as a novel biomarker in combination with major deregulated genes in prostate cancer. Mol Biol Rep. 2014;41(9):6125–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996;2(7):811–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Xue L, Han X, Liu R, Wang Z, Li H, Chen Q, et al. MDM2 and P53 polymorphisms contribute together to the risk and survival of prostate cancer. Oncotarget. 2015;7(22):31825–31.PubMedCentralGoogle Scholar
  58. 58.
    Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer. 2004;108(2):196–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Katayama H, Sasai K, Kloc M, Brinkley BR, Sen S. Aurora kinase-A regulates kinetochore/chromatin associated microtubule assembly in human cells. Cell Cycle. 2008;7(17):2691–704.PubMedCrossRefGoogle Scholar
  60. 60.
    Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack Jr RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci. 2013;70(4):661–87.PubMedCrossRefGoogle Scholar
  61. 61.
    Karthigeyan D, Prasad SB, Shandilya J, Agrawal S, Kundu TK. Biology of Aurora A kinase: implications in cancer manifestation and therapy. Med Res Rev. 2011;31(5):757–93.PubMedGoogle Scholar
  62. 62.
    Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1(6):487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15(1):67–78.PubMedCrossRefGoogle Scholar
  67. 67.
    Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16(20):2699–712.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C, et al. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature. 1983;306(5941):395–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35(4):403–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Deramaudt TB, Remy P, Stiegler P. Identification of interaction partners for two closely-related members of the ETS protein family, FLI and ERG. Gene. 2001;274(1-2):169–77.PubMedCrossRefGoogle Scholar
  72. 72.
    Vanaja DK, Cheville JC, Iturria SJ, Young CY. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 2003;63(14):3877–82.PubMedGoogle Scholar
  73. 73.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, et al. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011;6(7):e21650.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Becker-Santos DD, Guo Y, Ghaffari M, Vickers ED, Lehman M, Altamirano-Dimas M, et al. Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis. 2012;33(12):2558–67.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wright ME, Tsai MJ, Aebersold R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol. 2003;17(9):1726–37.PubMedCrossRefGoogle Scholar
  77. 77.
    Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH. Myc confers androgen-independent prostate cancer cell growth. J Clin Invest. 2003;112(11):1724–31.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Makela S, Strauss L, Kuiper G, Valve E, Salmi S, Santti R, et al. Differential expression of estrogen receptors alpha and beta in adult rat accessory sex glands and lower urinary tract. Mol Cell Endocrinol. 2000;170(1–2):219–29.PubMedGoogle Scholar
  79. 79.
    Chen M, Hsu I, Wolfe A, Radovick S, Huang K, Yu S, et al. Defects of prostate development and reproductive system in the estrogen receptor-alpha null male mice. Endocrinology. 2009;150(1):251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice. Cancer Res. 2001;61(16):6089–97.PubMedGoogle Scholar
  81. 81.
    Shaw GL, Whitaker H, Corcoran M, Dunning MJ, Luxton H, Kay J, et al. The early effects of rapid androgen deprivation on human prostate cancer. Eur Urol. 2015;70(2):214–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Leav I, Lau KM, Adams JY, McNeal JE, Taplin ME, Wang J, et al. Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am J Pathol. 2001;159(1):79–92.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cheng J, Lee EJ, Madison LD, Lazennec G. Expression of estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis. FEBS Lett. 2004;566(1–3):169–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu X, Leav I, Leung YK, Wu M, Liu Q, Gao Y, et al. Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol. 2004;164(6):2003–12.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mak P, Li J, Samanta S, Chang C, Jerry DJ, Davis RJ, et al. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor beta repression. Cell Rep. 2015;10(12):1982–91.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71(18):6019–29.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Edwards J, Krishna NS, Mukherjee R, Watters AD, Underwood MA, Bartlett JM. Amplification of the androgen receptor may not explain the development of androgen-independent prostate cancer. BJU Int. 2001;88(6):633–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447–54.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Mohler JL, Gregory CW, Ford 3rd OH, Kim D, Weaver CM, Petrusz P, et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res. 2004;10(2):440–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet. 2010;375(9724):1437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26(28):4563–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523(7560):347–51.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J Androl. 2010;12(5):639–57.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nakazawa M, Antonarakis ES, Luo J. Androgen receptor splice variants in the era of enzalutamide and abiraterone. Horm Cancer. 2014;5(5):265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.PubMedCrossRefGoogle Scholar
  98. 98.
    Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 2008;410(1):1–17.PubMedCrossRefGoogle Scholar
  99. 99.
    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRefGoogle Scholar
  101. 101.
    Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans. 2003;31(Pt 3):573–8.PubMedGoogle Scholar
  103. 103.
    Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16(12):1472–87.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001;98(18):10314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Qi W, Morales C, Cooke LS, Johnson B, Somer B, Mahadevan D. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Oncotarget. 2015;6(39):41976–87.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999;96(8):4240–5.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997;57(22):4997–5000.PubMedGoogle Scholar
  109. 109.
    Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–86.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.PubMedCrossRefGoogle Scholar
  111. 111.
    Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12(1):22–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Ao M, Williams K, Bhowmick NA, Hayward SW. Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res. 2006;66(16):8007–16.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, et al. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001;61(10):4222–8.PubMedGoogle Scholar
  114. 114.
    Guo Y, Kyprianou N. Overexpression of transforming growth factor (TGF) beta1 type II receptor restores TGF-beta1 sensitivity and signaling in human prostate cancer cells. Cell Growth Differ. 1998;9(2):185–93.PubMedGoogle Scholar
  115. 115.
    Yue J, Mulder KM. Activation of the mitogen-activated protein kinase pathway by transforming growth factor-beta. Methods Mol Biol. 2000;142:125–31.PubMedGoogle Scholar
  116. 116.
    Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ. Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res. 2003;63(8):1981–9.PubMedGoogle Scholar
  117. 117.
    Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther. 2000;88(3):229–79.PubMedCrossRefGoogle Scholar
  118. 118.
    Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C, et al. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer. 2011;104(12):1920–8.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, et al. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem. 1997;272(28):17485–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria A. Smolle
    • 1
    • 2
    Email author
  • Johannes Haybaeck
    • 3
    • 4
  • Martin Pichler
    • 5
  1. 1.Institute of PathologyMedical University of GrazGrazAustria
  2. 2.Department of Orthopaedics and TraumaMedical University of GrazGrazAustria
  3. 3.Department of PathologyMedical Faculty, Otto von Guericke University MagdeburgMagdeburgGermany
  4. 4.Institute of PathologyMedical University of GrazGrazAustria
  5. 5.Division of Clinical OncologyMedical University of GrazGrazAustria

Personalised recommendations