Molecular Pathogenesis of Bone Tumours

  • Maria A. SmolleEmail author
  • Johannes Haybaeck


Bone tumours constitute a rare tumour entity, thus comprising many subtypes, such as cartilage tumours, haematopoietic tumours, Ewing sarcomas, giant cell tumours, chordomas and tumours with undefined neoplastic features. Various genes and derived proteins are involved in the development of bone tumours and sarcomas. Some genes are unique for one neoplasm, whereas others are altered in different subtypes. Most bone sarcomas arise de novo. Dedifferentiation of benign bone neoplasms towards sarcomas has been observed, especially in hereditary tumour syndromes. These syndromes are characterised by mutations of specific genes that are involved in the development of bone neoplasms.

The following chapter will give an insight into the molecular pathogenesis of bone tumours by covering different genes, their regular function and their possible role during tumorigenesis. Different tumour types and hereditary tumour syndromes accompanied by increased likelihood of developing bone neoplasms will be discussed as well.


Connective Tissue Growth Factor Fibrous Dysplasia Giant Cell Tumour Ewing Sarcoma Werner Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Verdegaal SH, Bovee JV, Pansuriya TC, Grimer RJ, Ozger H, Jutte PC, San Julian M, Biau DJ, Van Der Geest IC, Leithner A, Streitburger A, Klenke FM, Gouin FG, Campanacci DA, Marec-Berard P, Hogendoorn PC, Brand R, Taminiau AH. Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist. 2011;16:1771–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Streitbuerger A, Hardes J, Gebert C, Ahrens H, Winkelmann W, Gosheger G. Cartilage tumours of the bone. Diagnosis and therapy. Orthopade. 2006;35:871–81. quiz 882PubMedCrossRefGoogle Scholar
  4. 4.
    Glick R, Khaldi L, Ptaszynski K, Steiner GC. Dysplasia epiphysealis hemimelica (Trevor disease): a rare developmental disorder of bone mimicking osteochondroma of long bones. Hum Pathol. 2007;38:1265–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmale GA, Conrad 3rd EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994;76:986–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Bloem JL, Mulder JD. Chondroblastoma: a clinical and radiological study of 104 cases. Skelet Radiol. 1985;14:1–9.CrossRefGoogle Scholar
  7. 7.
    Lee FY, Mankin HJ, Fondren G, Gebhardt MC, Springfield DS, Rosenberg AE, Jennings LC. Chondrosarcoma of bone: an assessment of outcome. J Bone Joint Surg Am. 1999;81:326–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Heuck A, Stabler A, Wortler K, Steinborn M. Benign bone-forming tumors. Radiologe. 2001;41:540–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Onitsuka H. Roentgenologic aspects of bone islands. Radiology. 1977;123:607–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Becce F, Jovanovic B, Guillou L, Theumann N. Painful fingertip swelling of the middle finger. Osteoid osteoma of the distal phalanx of the middle finger. Skelet Radiol. 2011;40(1479–80):1501–2.CrossRefGoogle Scholar
  11. 11.
    Klein MH, Shankman S. Osteoid osteoma: radiologic and pathologic correlation. Skelet Radiol. 1992;21:23–31.CrossRefGoogle Scholar
  12. 12.
    Dahlin DC, Johnson Jr EW. Giant osteoid osteoma. J Bone Joint Surg Am. 1954;36-A:559–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Kroon HM, Schurmans J. Osteoblastoma: clinical and radiologic findings in 98 new cases. Radiology. 1990;175:783–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75:203–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Dahlin DC. Pathology of osteosarcoma. Clin Orthop Relat Res. 1975:23–32.Google Scholar
  16. 16.
    Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26:1–18.PubMedCrossRefGoogle Scholar
  17. 17.
    Ozaki T. Diagnosis and treatment of Ewing sarcoma of the bone: a review article. J Orthop Sci. 2015;20:250–63.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Berg T, Kalsaas AH, Buechner J, Busund LT. Ewing sarcoma-peripheral neuroectodermal tumor of the kidney with a FUS-ERG fusion transcript. Cancer Genet Cytogenet. 2009;194:53–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Aman P, Panagopoulos I, Lassen C, Fioretos T, Mencinger M, Toresson H, Hoglund M, Forster A, Rabbitts TH, Ron D, Mandahl N, Mitelman F. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics. 1996;37:1–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellis PA, Colls BM. Solitary plasmacytoma of bone: clinical features, treatment and survival. Hematol Oncol. 1992;10:207–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Salmon SE, Seligmann M. B-cell neoplasia in man. Lancet. 1974;2:1230–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Soutar R, Lucraft H, Jackson G, Reece A, Bird J, Low E, Samson D, Working Group of the UK Myeloma Forum, British Committee for Standards in Haematology, British Society for Haematology. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Clin Oncol (R Coll Radiol). 2004;16:405–13.CrossRefGoogle Scholar
  24. 24.
    Devesa SS, Silverman DT, Young Jr JL, Pollack ES, Brown CC, Horm JW, Percy CL, Myers MH, Mckay FW, Fraumeni Jr JF. Cancer incidence and mortality trends among whites in the United States, 1947–84. J Natl Cancer Inst. 1987;79:701–70.PubMedGoogle Scholar
  25. 25.
    Susnerwala SS, Shanks JH, Banerjee SS, Scarffe JH, Farrington WT, Slevin NJ. Extramedullary plasmacytoma of the head and neck region: clinicopathological correlation in 25 cases. Br J Cancer. 1997;75:921–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Heyning FH, Hogendoorn PC, Kramer MH, Hermans J, Kluin-Nelemans JC, Noordijk EM, Kluin PM. Primary non-Hodgkin’s lymphoma of bone: a clinicopathological investigation of 60 cases. Leukemia. 1999;13:2094–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Moses AM, Spencer H. Hypercalcemia in Patients with Malignant Lymphoma. Ann Intern Med. 1963;59:531–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Campanacci M, Baldini N, Boriani S, Sudanese A. Giant-cell tumor of bone. J Bone Joint Surg Am. 1987;69:106–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, San Martin J, Dansey R. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11:401–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Cowan RW, Singh G. Giant cell tumor of bone: a basic science perspective. Bone. 2013;52:238–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69–74.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mcmaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973-1995. Cancer Causes Control. 2001;12:1–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaiser TE, Pritchard DJ, Unni KK. Clinicopathologic study of sacrococcygeal chordoma. Cancer. 1984;53:2574–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Rapp TB, Ward JP, Alaia MJ. Aneurysmal bone cyst. J Am Acad Orthop Surg. 2012;20:233–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Barea F, Rodriguez-Peralto JL, Burgos-Lizaldez E, Alvarez-Linera J, Sanchez-Herrera S. Primary aneurysmal cyst of soft tissue. Report of a case with ultrastructural and MRI studies. Virchows Arch. 1996;428:125–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Kransdorf MJ, Sweet DE. Aneurysmal bone cyst: concept, controversy, clinical presentation, and imaging. AJR Am J Roentgenol. 1995;164:573–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Margau R, Babyn P, Cole W, Smith C, Lee F. MR imaging of simple bone cysts in children: not so simple. Pediatr Radiol. 2000;30:551–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen Jr MM. Fibrous dysplasia is a neoplasm. Am J Med Genet. 2001;98:290–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Cremonini N, Graziano E, Chiarini V, Sforza A, Zampa GA. Atypical McCune-Albright syndrome associated with growth hormone-prolactin pituitary adenoma: natural history, long-term follow-up, and SMS 201-995--bromocriptine combined treatment results. J Clin Endocrinol Metab. 1992;75:1166–9.PubMedGoogle Scholar
  40. 40.
    Wester SM, Beabout JW, Unni KK, Dahlin DC. Langerhans’ cell granulomatosis (histiocytosis X) of bone in adults. Am J Surg Pathol. 1982;6:413–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakajima T, Watanabe S, Sato Y, Shimosato Y, Motoi M, Lennert K. S-100 protein in Langerhans cells, interdigitating reticulum cells and histiocytosis X cells. Gan. 1982;73:429–32.PubMedGoogle Scholar
  42. 42.
    Caparros-Lefebvre D, Pruvo JP, Remy M, Wallaert B, Petit H. Neuroradiologic aspects of Chester-Erdheim disease. AJNR Am J Neuroradiol. 1995;16:735–40.PubMedGoogle Scholar
  43. 43.
    Veyssier-Belot C, Cacoub P, Caparros-Lefebvre D, Wechsler J, Brun B, Remy M, Wallaert B, Petit H, Grimaldi A, Wechsler B, Godeau P. Erdheim-Chester disease. Clinical and radiologic characteristics of 59 cases. Medicine (Baltimore). 1996;75:157–69.CrossRefGoogle Scholar
  44. 44.
    Ayala AG, Ro JY, Bolio-Solis A, Hernandez-Batres F, Eftekhari F, Edeiken J. Mesenchymal hamartoma of the chest wall in infants and children: a clinicopathological study of five patients. Skelet Radiol. 1993;22:569–76.CrossRefGoogle Scholar
  45. 45.
    Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell. 2004;5:365–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Emdad L, Sarkar D, Su ZZ, Randolph A, Boukerche H, Valerie K, Fisher PB. Activation of the nuclear factor kappaB pathway by astrocyte elevated gene-1: implications for tumor progression and metastasis. Cancer Res. 2006;66:1509–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang F, Ke ZF, Sun SJ, Chen WF, Yang SC, Li SH, Mao XP, Wang LT. Oncogenic roles of astrocyte elevated gene-1 (AEG-1) in osteosarcoma progression and prognosis. Cancer Biol Ther. 2011;12:539–48.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang F, Ke ZF, Wang R, Wang YF, Huang LL, Wang LT. Astrocyte elevated gene-1 (AEG-1) promotes osteosarcoma cell invasion through the JNK/c-Jun/MMP-2 pathway. Biochem Biophys Res Commun. 2014;452:933–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89:1260–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Ying Z, Li J, Li M. Astrocyte elevated gene 1: biological functions and molecular mechanism in cancer and beyond. Cell Biosci. 2011;1:36.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liu B, Wu Y, Peng D. Astrocyte elevated gene-1 regulates osteosarcoma cell invasion and chemoresistance via endothelin-1/endothelin A receptor signaling. Oncol Lett. 2013;5:505–10.PubMedGoogle Scholar
  52. 52.
    Gibbons RJ, Picketts DJ, Villard L, Higgs DR. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell. 1995;80:837–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Conte D, Huh M, Goodall E, Delorme M, Parks RJ, Picketts DJ. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways. PLoS One. 2012;7:e52167.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–8.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L, Parker M, Rusch M, Nagahawatte P, Wu J, Mao S, Boggs K, Mulder H, Yergeau D, Lu C, Ding L, Edmonson M, Qu C, Wang J, Li Y, Navid F, Daw NC, Mardis ER, Wilson RK, Downing JR, Zhang J, Dyer MA, St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7:104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.PubMedCrossRefGoogle Scholar
  57. 57.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Amary MF, Ye H, Forbes G, Damato S, Maggiani F, Pollock R, Tirabosco R, Flanagan AM. Isocitrate dehydrogenase 1 mutations (IDH1) and p16/CDKN2A copy number change in conventional chondrosarcomas. Virchows Arch. 2015;466:217–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Dhar A, Ray A. The CCN family proteins in carcinogenesis. Exp Oncol. 2010;32:2–9.PubMedGoogle Scholar
  61. 61.
    Perbal B. CCN proteins: multifunctional signalling regulators. Lancet. 2004;363:62–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Luft FC. CCN2, the connective tissue growth factor. J Mol Med (Berl). 2008;86:1–3.CrossRefGoogle Scholar
  63. 63.
    Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget. 2014;5:3800–12.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tan TW, Lai CH, Huang CY, Yang WH, Chen HT, Hsu HC, Fong YC, Tang CH. CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, Fak, Erk, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem. 2009;107:345–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in cancer. Nat Rev Cancer. 2003;3:110–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Felx M, Guyot MC, Isler M, Turcotte RE, Doyon J, Khatib AM, Leclerc S, Moreau A, Moldovan F. Endothelin-1 (ET-1) promotes MMP-2 and MMP-9 induction involving the transcription factor NF-kappaB in human osteosarcoma. Clin Sci (Lond). 2006;110:645–54.CrossRefGoogle Scholar
  67. 67.
    Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, Kusche-Gullberg M. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem. 2007;282:32802–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Lind T, Tufaro F, Mccormick C, Lindahl U, Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273:26265–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Busse-Wicher M, Wicher KB, Kusche-Gullberg M. The exostosin family: proteins with many functions. Matrix Biol. 2014;35:25–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Liu H, Wu S, Duan L, Zhu W, Zhang S, Hu X, Jia W, Yang G, Liu C, Li W, Yang L, Guo L, Lin Y, Wang Y, He M, Yang Z, He Y, Cai Z, Wang D. Identification of a novel EXT1 mutation in patients with hereditary multiple exostosis by exome sequencing. Oncol Rep. 2015;33:547–52.PubMedGoogle Scholar
  71. 71.
    Hameetman L, David G, Yavas A, White SJ, Taminiau AH, Cleton-Jansen AM, Hogendoorn PC, Bovee JV. Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol. 2007;211:399–409.PubMedCrossRefGoogle Scholar
  72. 72.
    Carter JM, Inwards CY, Jin L, Evers B, Wenger DE, Oliveira AM, Fritchie KJ. Activating GNAS mutations in parosteal osteosarcoma. Am J Surg Pathol. 2014;38:402–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Masters SB, Miller RT, Chi MH, Chang FH, Beiderman B, Lopez NG, Bourne HR. Mutations in the GTP-binding site of GS alpha alter stimulation of adenylyl cyclase. J Biol Chem. 1989;264:15467–74.PubMedGoogle Scholar
  74. 74.
    Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, Van Putten WJ, Rijneveld AW, Lowenberg B, Valk PJ. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116:2122–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Yan H, Parsons DW, Jin G, Mclendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R, O’donnell P, Grigoriadis A, Diss T, Eskandarpour M, Presneau N, Hogendoorn PC, Futreal A, Tirabosco R, Flanagan AM. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.PubMedCrossRefGoogle Scholar
  79. 79.
    Pedeutour F, Maire G, Sirvent N, Groupe francophone de cytogénétique oncologique. From cytogenetics to cytogenomics of adipose tissue tumors: 2. Malignant adipose tissue tumors. Bull Cancer. 2004;91:317–23.PubMedGoogle Scholar
  80. 80.
    Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets. 2005;5:27–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Zheng L, Lee WH. The retinoblastoma gene: a prototypic and multifunctional tumor suppressor. Exp Cell Res. 2001;264:2–18.PubMedCrossRefGoogle Scholar
  82. 82.
    Dujardin F, Binh MB, Bouvier C, Gomez-Brouchet A, Larousserie F, Muret A, Louis-Brennetot C, Aurias A, Coindre JM, Guillou L, Pedeutour F, Duval H, Collin C, de Pinieux G. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol. 2011;24:624–37.PubMedCrossRefGoogle Scholar
  83. 83.
    Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P, Bertoni F. MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 2015;46:549–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshida A, Ushiku T, Motoi T, Beppu Y, Fukayama M, Tsuda H, Shibata T. MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: correlation with a dedifferentiated subtype. Am J Surg Pathol. 2012;36:423–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Mckinsey TA, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 2002;27:40–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA. Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem. 2011;286:30071–86.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Han TH, Prywes R. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol Cell Biol. 1995;15:2907–15.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y, Xia F, Shan J, Shen J, Yang Z, Bie P, Cui Y, Bian XW, Prieto J, Avila MA, Qian C. Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-M transition genes. Cancer Res. 2014;74:1452–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12:3657–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, Richards W, Sugarbaker D, Husain AN, Christensen JG, Salgia R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–88.PubMedCrossRefGoogle Scholar
  91. 91.
    Fleuren ED, Roeffen MH, Leenders WP, Flucke UE, Vlenterie M, Schreuder HW, Boerman OC, VAN DER Graaf WT, Versleijen-Jonkers YM. Expression and clinical relevance of MET and ALK in Ewing sarcomas. Int J Cancer. 2013;133:427–36.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995;10:739–49.PubMedGoogle Scholar
  93. 93.
    Dani N, Olivero M, Mareschi K, van Duist MM, Miretti S, Cuvertino S, Patane S, Calogero R, Ferracini R, Scotlandi K, Fagioli F, Di Renzo MF. The MET oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. J Bone Miner Res. 2012;27:1322–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Yan D, Wallingford JB, Sun TQ, Nelson AM, Sakanaka C, Reinhard C, Harland RM, Fantl WJ, Williams LT. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc Natl Acad Sci U S A. 2001;98:3802–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cloutier S, Hamel H, Champagne M, Yotov WV. Mapping of the human DNA primase 1 (PRIM1) to chromosome 12q13. Genomics. 1997;43:398–401.PubMedCrossRefGoogle Scholar
  96. 96.
    Yotov WV, Hamel H, Rivard GE, Champagne MA, Russo PA, Leclerc JM, Bernstein ML, Levy E. Amplifications of DNA primase 1 (PRIM1) in human osteosarcoma. Genes Chromosomes Cancer. 1999;26:62–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Miyazawa H, Izumi M, Tada S, Takada R, Masutani M, Ui M, Hanaoka F. Molecular cloning of the cDNAs for the four subunits of mouse DNA polymerase alpha-primase complex and their gene expression during cell proliferation and the cell cycle. J Biol Chem. 1993;268:8111–22.PubMedGoogle Scholar
  98. 98.
    Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 1994;23:425–32.PubMedCrossRefGoogle Scholar
  99. 99.
    Miller J, Horner A, Stacy T, Lowrey C, Lian JB, Stein G, Nuckolls GH, Speck NA. The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet. 2002;32:645–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Kagoshima H, Shigesada K, Kohara Y. RUNX regulates stem cell proliferation and differentiation: insights from studies of C. elegans. J Cell Biochem. 2007;100:1119–30.PubMedCrossRefGoogle Scholar
  101. 101.
    Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339:189–95.PubMedCrossRefGoogle Scholar
  102. 102.
    Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004;14:1–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang Y, Hassan MQ, Xie RL, Hawse JR, Spelsberg TC, Montecino M, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats). J Biol Chem. 2009;284:3125–35.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire J, Zielenska M. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 2010;10:202.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene. 2013;32:2121–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Soong R, Shah N, Peh BK, Chong PY, Ng SS, Zeps N, Joseph D, Salto-Tellez M, Iacopetta B, Ito Y. The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Br J Cancer. 2009;100:676–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC, Tada K, Ong WY, Soong R, Voon DC, Ito Y. RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene. 2006;25:7646–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H, Abiko Y, Takata T. RUNX3 has an oncogenic role in head and neck cancer. PLoS One. 2009;4:e5892.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bledsoe KL, Mcgee-Lawrence ME, Camilleri ET, Wang X, Riester SM, Van Wijnen AJ, Oliveira AM, Westendorf JJ. RUNX3 facilitates growth of Ewing sarcoma cells. J Cell Physiol. 2014;229:2049–56.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Dobreva G, Dambacher J, Grosschedl R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 2003;17:3048–61.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 2006;125:971–86.PubMedCrossRefGoogle Scholar
  112. 112.
    Seong BK, Lau J, Adderley T, Kee L, Chaukos D, Pienkowska M, Malkin D, Thorner P, Irwin MS. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene. 2015;34:3582–92.PubMedCrossRefGoogle Scholar
  113. 113.
    Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12:414–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Gudkov, A. V., Komarova, E. A.. Dangerous habits of a security guard: the two faces of p53 as a drug target. Hum Mol Genet. 2007;16 (Spec No 1):R67–72.Google Scholar
  115. 115.
    Pakos EE, Kyzas PA, Ioannidis JP. Prognostic significance of TP53 tumor suppressor gene expression and mutations in human osteosarcoma: a meta-analysis. Clin Cancer Res. 2004;10:6208–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Wu X, Cai ZD, Lou LM, Zhu YB. Expressions of p53, c-Myc, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol. 2012;36:212–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Rubin EM, Guo Y, Tu K, Xie J, Zi X, Hoang BH. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther. 2010;9:731–41.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116:2627–34.PubMedCrossRefGoogle Scholar
  119. 119.
    Itoh Y. MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life. 2006;58:589–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Li FP, Fraumeni Jr JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–62.PubMedGoogle Scholar
  122. 122.
    Yamada H, Shinmura K, Yamamura Y, Kurachi K, Nakamura T, Tsuneyoshi T, Yokota N, Maekawa M, Sugimura H. Identification and characterization of a novel germline p53 mutation in a patient with glioblastoma and colon cancer. Int J Cancer. 2009;125:973–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Zoccali C, Teori G, Prencipe U, Erba F. Mazabraud’s syndrome: a new case and review of the literature. Int Orthop. 2009;33:605–10.PubMedCrossRefGoogle Scholar
  124. 124.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.PubMedCrossRefGoogle Scholar
  125. 125.
    Spiegel AM, Weinstein LS, Shenker A. Abnormalities in G protein-coupled signal transduction pathways in human disease. J Clin Invest. 1993;92:1119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Auyeung J, Mohanty K, Tayton K. Maffucci lymphangioma syndrome: an unusual variant of Ollier’s disease, a case report and a review of the literature. J Pediatr Orthop B. 2003;12:147–50.PubMedGoogle Scholar
  127. 127.
    Kumar A, Jain VK, Bharadwaj M, Arya RK. Ollier Disease: Pathogenesis, Diagnosis, and Management. Orthopedics. 2015;38:e497–506.PubMedCrossRefGoogle Scholar
  128. 128.
    Pansuriya TC, Van Eijk R, d’Adamo P, Van Ruler MA, Kuijjer ML, Oosting J, Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, van Wezel T, Nord KH, Sangiorgi L, Toker B, Liegl-Atzwanger B, San-Julian M, Sciot R, Limaye N, Kindblom LG, Daugaard S, Godfraind C, Boon LM, Vikkula M, Kurek KC, Szuhai K, French PJ, Bovee JV. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011;43:1256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Couvineau A, Wouters V, Bertrand G, Rouyer C, Gerard B, Boon LM, Grandchamp B, Vikkula M, Silve C. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet. 2008;17:2766–75.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tan A, Ralston SH. Paget’s disease of bone. QJM. 2014;107:865–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Ralston SH, Langston AL, Reid IR. Pathogenesis and management of Paget’s disease of bone. Lancet. 2008;372:155–63.PubMedCrossRefGoogle Scholar
  132. 132.
    Ralston SH, Layfield R. Pathogenesis of Paget disease of bone. Calcif Tissue Int. 2012;91:97–113.PubMedCrossRefGoogle Scholar
  133. 133.
    Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, Song S, Pitto RP, Cundy T, Cornish J, Reid IR. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J Bone Miner Res. 2007;22:298–309.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang J, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma. Cell Cycle. 2004;3:952–9.PubMedGoogle Scholar
  135. 135.
    Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24:828–48.PubMedCrossRefGoogle Scholar
  136. 136.
    Gonzalez-Vasconcellos I, Domke T, Kuosaite V, Esposito I, Sanli-Bonazzi B, Nathrath M, Atkinson MJ, Rosemann M. Differential effects of genes of the Rb1 signalling pathway on osteosarcoma incidence and latency in alpha-particle irradiated mice. Radiat Environ Biophys. 2011;50:135–41.PubMedCrossRefGoogle Scholar
  137. 137.
    Wong FL, Boice Jr JD, Abramson DH, Tarone RE, Kleinerman RA, Stovall M, Goldman MB, Seddon JM, Tarbell N, Fraumeni Jr JF, Li FP. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA. 1997;278:1262–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Schulz CJ, Riddle MP, Valdimirsdottir HB, Abramson DH, Sklar CA. Impact on survivors of retinoblastoma when informed of study results on risk of second cancers. Med Pediatr Oncol. 2003;41:36–43.PubMedCrossRefGoogle Scholar
  139. 139.
    Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet. 1999;22:82–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Larizza L, Roversi G, Volpi L. Rothmund-Thomson syndrome. Orphanet J Rare Dis. 2010;5:2.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon SE. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet. 2001;102:11–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Sharma S, Doherty KM, Brosh Jr RM. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J. 2006;398:319–37.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sengupta S, Shimamoto A, Koshiji M, Pedeux R, Rusin M, Spillare EA, Shen JC, Huang LE, Lindor NM, Furuichi Y, Harris CC. Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene. 2005;24:1738–48.PubMedCrossRefGoogle Scholar
  144. 144.
    Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res. 2006;312:3443–57.PubMedCrossRefGoogle Scholar
  145. 145.
    Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS, Oshima J. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat. 2006;27:558–67.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomark Prev. 1996;5:239–46.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of PathologyMedical University of GrazGrazAustria
  2. 2.Department of Orthopaedics and TraumaMedical University of GrazGrazAustria
  3. 3.Department of Pathology, Medical FacultyOtto von Guericke University MagdeburgMagdeburgGermany
  4. 4.Institute of PathologyMedical University of GrazGrazAustria

Personalised recommendations