Advertisement

Modelling Molecular Mechanisms of Cancer Pathogenesis: Virtual Patients, Real Opportunities

  • Hans LehrachEmail author
  • Thomas Kessler
  • Lesley Ogilvie
  • Moritz Schütte
  • Christoph Wierling
Chapter

Abstract

A combination of decades of cancer research and trillions of dollars has helped to exponentially increase our understanding of the molecular processes involved in cancer pathogenesis [1, 2] and to develop new cancer drugs. However, despite progress in diagnosing and treating cancer, these diseases remain one of the leading causes of morbidity and mortality worldwide, responsible for millions of deaths each year [3]. Moreover, we are still faced, on average, with low drug response rates, very serious treatment side effects and questionable survival benefits. In Europe alone, cancer kills around 4000 people every day [4] and costs billions per year [5]. Worldwide, the number of new cancer cases is increasing every year [4], at least partly due to rapidly ageing populations [6], with the number of new cancer cases projected to reach 25 million per year by 2030, and cure rates for many common forms of cancer stagnating [4]. Due to the high number of nonresponders to existing drugs and spiralling costs of new cancer drugs—costs have almost doubled in the last decade, resulting in a dramatic decrease in the number of new drugs—an individualised approach to the diagnosis and treatment of cancer patients is desperately required.

Keywords

Tumour heterogeneity Virtual patient Mechanistic modelling 

Notes

Acknowledgements

The authors would like to thank their colleagues at Alacris Theranostics GmbH and the Dahlem Centre for Genome Research and Medical Systems Biology (DCGMS), for fruitful discussions and constructive criticism.

References

  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Stewart BW, Wild CP. World cancer report. IARC Non-serial Publication. WHO Press; 2014. ISBN: 978-92-832-0429-9.Google Scholar
  5. 5.
    Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol. 2013;14:1165–74.CrossRefPubMedGoogle Scholar
  6. 6.
    United Nations, Department of Economic and Social Affairs, Population Division. World population ageing 2013. ST/ESA/SER.A/348. 2013.Google Scholar
  7. 7.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71. Erratum in: Ann Hum Biol. 2013;40(6):471CrossRefPubMedGoogle Scholar
  8. 8.
    Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014;8:1095–111.CrossRefPubMedGoogle Scholar
  10. 10.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–9.CrossRefPubMedGoogle Scholar
  11. 11.
    International Cancer Genome Consortium, Hudson TJ, et al. International network of cancer genome projects. Nature. 2010;464:993–8.CrossRefGoogle Scholar
  12. 12.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio S, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjöro JE, Foekens JA, Graeves M, Hosoda F, Huter B, Ilicic T, Imbeaud S, Imielinks M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso Angelo, Person JV, Puente XS, Raine K, Ramakrishna Manasa, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Span PN, Teague JW, Totoki Y, Tutt A, Valdes-Mas R, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pflister SM, Campbell PJ, Stratton MR: Signatures of Mutational Processes in Human Cancer. Nature 2013; 500 (7463):415–421.Google Scholar
  13. 13.
    Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan MM, Yau CY, Kandoth C, Bowlby R, Shen H, Hayat S, Fieldhouse R, Lester SC, Tse GM, Factor RE, Collins LC, Allison KH, Chen YY, Jensen K, Johnson NB, Oesterreich S, Mills GB, Cherniack AD, Robertson G, Benz C, Sander C, Laird PW, Hoadley KA, King TA, TCGA Research Network, Perou CM. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;63(2):506–19.CrossRefGoogle Scholar
  14. 14.
    Jäger N, Schlesner M, Jones DTW, Raffel S, Mallm JP, Junge KM, Weichenhan D, Bauer T, Ishaque N, Kool M, Northcott PA, Korshunov A, Drews RM, Koster J, Versteeg R, Richter J, Hummel M, Mack SC, Taylor MD, Witt H, Swartman B, Schulte-Bockholt D, Sultan M, Yaspo ML, Lehrach H, Hutter B, Brors B, Wolf S, Plass C, Siebert R, Trumpp A, Rippe K, Lehmann I, Lichter P, Pfister SM, Eils R. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell. 2013;155(3):567–81.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59–77.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1Google Scholar
  18. 18.
    Purvis J, Ilango V, Radhakrishnan R. Role of network branching in eliciting differential short-term signaling responses in the hypersensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotech Prog. 2008;24:540–53.CrossRefGoogle Scholar
  19. 19.
    Shih AJ, Purvis J, Radhakrishnan R. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing. Mol BioSyst. 2008;4:1151–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li F, Thiele I, Jamshidi N, Palsson BO. Identification of potential pathway mediation targets in toll-like receptor signaling. PLoS Comput Biol. 2009;5:e1000292.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bachmann J, Raue A, Schilling M, Becker V, et al. Predictive mathematical models of cancer signalling pathways. J Intern Med. 2012;271:155–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Cho KH, Shin SY, Lee HW, Wolkenhauer O. Investigations into the analysis and modeling of the TNF alpha-mediated NF-kappa B-signaling pathway. Genome Res. 2003;13(11):2413–22.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Henderson D, Ogilvie LA, Hoyle N, Keilholz U, Lange B, Lehrach H, OncoTrack Consortium. Personalized medicine approaches for colon cancer driven by genomics and systems biology: OncoTrack. Biotechnol J. 2014;9(9):1104–14.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ogilvie LA, Wierling C, Kessler T, Lehrach H, Lange BM. Predictive modeling of drug treatment in the area of personalized medicine. Cancer Inform. 2015;14(Suppl. 4):95–103.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Röhr C, Kerick M, Fischer A, Kühn A, Kashofer K, Timmermann B, et al. High-throughput miRNA and mRNA sequencing of paired colorectal normal, tumor and metastasis tissues and bioinformatic modeling of miRNA-1 therapeutic applications. PLoS One. 2013;8(7):e67461.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wierling C, Kühn A, Hache H, Daskalaki A, Maschke-Dutz E, Peycheva S, et al. Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment. Mutat Res. 2012;746(2):163–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Wierling C, Kessler T, Ogilvie LA, Lange BM, Yaspo ML, Lehrach H. Network and systems biology: essential steps in virtualising drug discovery and development. Drug Discov Today Technol. 2015;15:33–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Klipp E, Liebermeister W, Wierling C, Lehrach H, Herwig R. Systems biology: a textbook. Weinheim: Wiley-VCH GmbH & Co. KgaA; 2009.Google Scholar
  29. 29.
    Wierling C, Herwig R, Lehrach H. Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic. 2007;6(3):240–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich DC, Kryukov G, Carter SL, McKenna A, Sivachenko A, Rosenberg M, Kiezun A, Voet D, Lawrence M, Lichtenstein LT, Gentry JG, Huang FW, Fostel J, Farlow D, Barbie D, Gandhi L, Lander ES, Gray SW, Joffe S, Janne P, Garber J, Macconaill L, Lindeman N, Rollins B, Kantoff P, Fisher SA, Gabriel S, Getz G, Garraway LA. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20(6):682–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33:228–37.CrossRefPubMedGoogle Scholar
  33. 33.
    Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. What can exome sequencing do for you? J Med Genet. 2011;48:580–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, Galens KG, Murphy D, Zhang T, Kann L, Sausen M, Angiuoli SV, Diaz Jr LA, Velculescu VE. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra53.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Furney SJ, Turajlic S, Stamp G, Nohadani M, Carlisle A, Thomas JM, Hayes A, Strauss D, Gore M, van den Oord J, Larkin J, Marais R. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma. J Pathol. 2013;230(3):261–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol. 2015;12(6):344–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Wan MW, Wang J, Gao X, Sklar J. RNA sequencing and its applications in cancer diagnosis and targeted therapy. N A J Med Sci. 2014;7(4):156–62.Google Scholar
  38. 38.
    Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280(21):5350–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.CrossRefPubMedGoogle Scholar
  41. 41.
    Carr TH, McEwen R, Dougherty B, Johnson JH, Dry JR, Lai Z, Ghazoui Z, Laing NM, Hodgson DR, Cruzalegui F, Hollingsworth SJ, Barrett JC. Defining actionable mutations for oncology therapeutic development. Nat Rev Cancer. 2016;16(5):319–29.CrossRefPubMedGoogle Scholar
  42. 42.
    Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, Mose LE, Troester MA, Hammerman PS, Parker JS, Perou CM, Hayes DN. Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res. 2014;42(13):e107.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004;4:793–805.CrossRefPubMedGoogle Scholar
  44. 44.
    Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene. 2014;33(34):4279–85.CrossRefPubMedGoogle Scholar
  45. 45.
    Markiv A, Rambaruth NDS, Dwek MV. Beyond the genome and proteome: targeting protein modifications in cancer. Curr Opin Pharmacol. 2012;12:408–13.CrossRefPubMedGoogle Scholar
  46. 46.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Geißler D, Stufler S, Löhmannsröben HG, Hildebrandt N. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. J Am Chem Soc. 2013;135:1102–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Geißler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben HG, Hildebrandt N. Quantum dot biosensors for ultra-sensitive multiplexed diagnostics. Angew Chem Int Ed Engl. 2010;49(8):1396–401.CrossRefPubMedGoogle Scholar
  49. 49.
    Morgner F, Geißler D, Stufler S, Butlin NG, Löhmannsröben HG, Hildebrandt N. A quantum-dot-based molecular ruler for multiplexed optical analysis. Angew Chem. 2010;49:7570–4.CrossRefGoogle Scholar
  50. 50.
    Spurrier B, Ramalingam S, Nishizuka S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc. 2008;3:1796–808.CrossRefPubMedGoogle Scholar
  51. 51.
    Wegner KD, Lindén S, Jin Z, Jennings TL, el Khoulati R, van Bergen en Henegouwen PM, Hildebrandt N. Nanobodies and Nanocrystals: highly sensitive quantum dot-based homogeneous FRET-immunoassay for serum-based EGFR detection. Small. 2014;10(4):734–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Crosetto N, Bienko M, van Oudenaarden A. Spatially resolved transcriptomics and beyond. Nat Rev Genet. 2015;16:57–66.CrossRefPubMedGoogle Scholar
  53. 53.
    Mali P, Aach J, Lee J, Levner D, Nip L, Church GM. Barcoding cells using cell-surface programmable DNA-binding domains. Nat Methods. 2013;10(5):403–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Soderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3:995–1000.CrossRefPubMedGoogle Scholar
  55. 55.
    Weibrecht I, Lundin E, Kiflemariam S, Mignardi M, Grundberg I, Larsson C, Koos B, Nilsson M, Söderberg O. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat Protoc. 2013;8:355–72.CrossRefPubMedGoogle Scholar
  56. 56.
    Weibrecht I, Gavrilovic M, Lindbom L, Landegren U, Wählby C, Söderberg O. Visualising individual sequence-specific protein-DNA interactions in situ. New Biotechnol. 2012;29:589–98.CrossRefGoogle Scholar
  57. 57.
    Chen R, Snyder M. Systems biology: personalized medicine for the future? Curr Opin Pharmacol. 2012;12(5):623–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 2012;29(6):613–24.CrossRefGoogle Scholar
  59. 59.
    Enderling H, Rejniak KA. Simulating cancer: computational models in oncology. Front Oncol. 2013;3:233.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Faratian D, Bown JL, Smith VA, Langdon SP, Harrison DJ. Cancer systems biology. Methods Mol Biol. 2010;662:245–63.CrossRefPubMedGoogle Scholar
  61. 61.
    Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. Annu Rev Biomed Eng. 2011;13:127–55.CrossRefPubMedGoogle Scholar
  62. 62.
    Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 2006;34(Database issue):D504–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39(Database issue):D685–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res. 2009;37(Database issue):D623–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 2011;39(Database issue):D712–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6(7):e184.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, Ono K, Miello C, Hicks L, Szalma S, Stojmirovic A, Dobrin R, Braxenthaler M, Kuentzer J, Demchak B, Ideker T. NDEx, the Network Data Exchange. Cell Syst. 2015;1(4):302–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, Graim K, Bivol A, Wang H, Zhu F, Afsari B, Danilova LV, Favorov AV, Lee WS, Taylor D, Hu CW, Long BL, Noren DP, Bisberg AJ, Consortium HPN-DREAM, Mills GB, Gray JW, Kellen M, Norman T, Friend S, Qutub AA, Fertig EJ, Guan Y, Song M, Stuart JM, Spellman PT, Koeppl H, Stolovitzky G, Saez-Rodriguez J, Mukherjee S. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 2016;13(4):310–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yu MK, Kramer M, Dutkowski J, Srivas R, Licon K, Kreisberg J, Ng CT, Krogan N, Sharan R, Ideker T. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Syst. 2016;2(2):77–88.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712.CrossRefPubMedGoogle Scholar
  74. 74.
    Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, McIntosh M, Franklin CL. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS One. 2015;10(2):e0116704.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jensen MN, Ritskes-Hoitinga M. How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results. Lab Anim. 2007;41(1):1–18.CrossRefPubMedGoogle Scholar
  76. 76.
    Rogers GB, Kozlowska J, Keeble J, Metcalfe K, Fao M, Dowd SE, Mason AJ, McGuckin MA, Bruce KD. Functional divergence in gastrointestinal microbiota in physically-separated genetically identical mice. Sci Rep. 2014;4:5437.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Klipp E, Liebermeister L, Wierling C, Kowald A. Systems biology. A Textbook. Weinheim: Wiley-Blackwell; 2016.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hans Lehrach
    • 1
    • 2
    • 3
    Email author
  • Thomas Kessler
    • 1
    • 3
  • Lesley Ogilvie
    • 3
  • Moritz Schütte
    • 3
  • Christoph Wierling
    • 1
    • 3
  1. 1.Max Planck Institute for Molecular Genetics (MPIMG)BerlinGermany
  2. 2.Dahlem Centre for Genome Research and Medical Systems Biology (DCGMS)BerlinGermany
  3. 3.Alacris Theranostics GmbHBerlinGermany

Personalised recommendations