In Vitro Three-Dimensional Cell Cultures as Tool for Precision Medicine

  • Alessandra Silvestri
  • Dirk Schumacher
  • Maxine Silvestrov
  • Reinhold Schäfer
  • Christoph Reinhard
  • Jens Hoffmann
  • Karsten Boehnke
  • Christian R. A. RegenbrechtEmail author


For decades of molecular cancer research, immortal cancer cell lines have served as an easily accessible source for basic cancer biology research and preclinical testing of anticancer drugs. However, numerous studies have suggested that these cell lines poorly recapitulate the diversity, heterogeneity, and resulting drug resistance or relapse in patients. The derivation and (short-term) culture of primary cells from solid tumors have thus gained significant importance in personalized cancer therapy. This chapter focuses on our current understanding and the pros and cons of different preclinical and prospective clinical models of three-dimensional primary tumor cultures. We will discuss cell culture approaches, such as biomimetic scaffolds and growth factor supplemented, chemically defined media for various forms of solid tumors. Complex culture models of primary tumor cells could finally provide a key missing link between compound screening and clinical trials and ultimately will help redefining therapeutic intervention with high translational relevance at the level of the individual patient.


Precision Medicine Spheroid Formation Spinner Flask Organotypic Slice Culture Rotary Cell Culture System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.PubMedCrossRefGoogle Scholar
  2. 2.
    Harrison R. Observations on the living developing nerve fiber. Anat Rec. 1907;1:116–28.CrossRefGoogle Scholar
  3. 3.
    Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A. 2011;108(46):18708–13.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: useless artifacts or invaluable tools for medical science? Lung Cancer. 2010;68(3):309–18.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kirk R. Genetics: personalized medicine and tumour heterogeneity. Nat Rev Clin Oncol. 2012;9(5):250.PubMedCrossRefGoogle Scholar
  6. 6.
    Lima SC, Hernandez-Vargas H, Herceg Z. Epigenetic signatures in cancer: implications for the control of cancer in the clinic. Curr Opin Mol Ther. 2010;12(3):316–24.PubMedGoogle Scholar
  7. 7.
    Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol. 2005;32(5):521–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Calon A, Lonardo E, Berenguer-llergo A, Espinet E, Hernando-momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(February):320–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalus M, Delmonte L, Ghidoni JJ, Liebelt RA. Transplantation of mouse mammary carcinoma through matrix tissue cultures. Tex Rep Biol Med. 1968;26(4):517–24.PubMedGoogle Scholar
  10. 10.
    Inch WR, McCredie JA, Sutherland RM. Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. Growth. 1970;34(3):271–82.PubMedGoogle Scholar
  11. 11.
    Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst. 1971;46(1):113–20.PubMedGoogle Scholar
  12. 12.
    Yuhas JM, Li AP, Martinez AO, Ladman AJ. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 1977;37(10):3639–43.PubMedGoogle Scholar
  13. 13.
    Yuhas JM, Tarleton AE, Harman JG. In vitro analysis of the response of multicellular tumor spheroids exposed to chemotherapeutic agents in vitro or in vivo. Cancer Res. 1978;38(11 Pt 1):3595–8.PubMedGoogle Scholar
  14. 14.
    Yang J, Richards J, Bowman P, Guzman R, Enami J, McCormick K, et al. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc Natl Acad Sci U S A. 1979;76(7):3401–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mauchamp J, Margotat A, Chambard M, Charrier B, Remy L, Michel-Bechet M. Polarity of three-dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 1979;204(3):417–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98(2):137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162(6):1123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Heppner GH, Miller BE. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev. 1983;2(1):5–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197(4306):893–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 1978;38(9):2651–60.PubMedGoogle Scholar
  23. 23.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346(6206):251–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. A Big Bang model of human colorectal tumor growth. Nat Genet. 2015;47(3):209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schilsky RL. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov. 2010;9(5):363–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Mitsiades CS, Davies FE, Laubach JP, Joshua D, San Miguel J, Anderson KC, et al. Future directions of next-generation novel therapies, combination approaches, and the development of personalized medicine in myeloma. J Clin Oncol. 2011;29(14):1916–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Trusheim MR, Burgess B, Hu SX, Long T, Averbuch SD, Flynn AA, et al. Quantifying factors for the success of stratified medicine. Nat Rev Drug Discov. 2011;10(11):817–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Rygaard J, Povsen CO. Heterotransplantation of a human malignant tumour to “nude” mice. 1969. APMIS. 2007;115:604–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Cook N, Jodrell DI, Tuveson DA. Predictive in vivo animal models and translation to clinical trials. Drug Discov Today. 2012;17(5–6):253–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G, Roz L. Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J Biomed Biotechnol. 2012;2012:568567.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456–68.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhuo Y, Wu Y, Guo A, Chen S, Su J. Establishment of patient-derived lung cancer xenograft models and study for its biological characteristics. Zhongguo Fei Ai Za Zhi. 2010;13(6):568–74.PubMedGoogle Scholar
  41. 41.
    Jin K, He K, Han N, Li G, Wang H, Xu Z, et al. Establishment of a PDTT xenograft model of gastric carcinoma and its application in personalized therapeutic regimen selection. Hepatogastroenterology. 2011;58(110–111):1814–22.PubMedGoogle Scholar
  42. 42.
    Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97(5):695–710.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1(1):84–96.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Silberstein GB. Tumour-stromal interactions. Role of the stroma in mammary development. Breast Cancer Res. 2001;3(4):218–23.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci. 2003;116(Pt 12):2377–88.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 2007;28(36):5487–97.PubMedCrossRefGoogle Scholar
  47. 47.
    Mueller-Klieser W. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids. Biophys J. 1984;46(3):343–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Alvarez-Perez J, Ballesteros P, Cerdan S. Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators. MAGMA. 2005;18(6):293–301.PubMedCrossRefGoogle Scholar
  49. 49.
    Rodenhizer D, Gaude E, Cojocari D, Mahadevan R, Frezza C, Wouters BG, et al. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat Mater. 2016;15:227–34.PubMedCrossRefGoogle Scholar
  50. 50.
    van der Kuip H, Murdter TE, Sonnenberg M, McClellan M, Gutzeit S, Gerteis A, et al. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer. 2006;6:86.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Milani C, Welsh J, Katayama ML, Lyra EC, Maciel MS, Brentani MM, et al. Human breast tumor slices: a model for identification of vitamin D regulated genes in the tumor microenvironment. J Steroid Biochem Mol Biol. 2010;121(1–2):151–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Estes JM, Oliver PG, Straughn Jr JM, Zhou T, Wang W, Grizzle WE, et al. Efficacy of anti-death receptor 5 (DR5) antibody (TRA-8) against primary human ovarian carcinoma using a novel ex vivo tissue slice model. Gynecol Oncol. 2007;105(2):291–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Kiviharju-af Hallstrom TM, Jaamaa S, Monkkonen M, Peltonen K, Andersson LC, Medema RH, et al. Human prostate epithelium lacks Wee1A-mediated DNA damage-induced checkpoint enforcement. Proc Natl Acad Sci U S A. 2007;104(17):7211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mackenzie IC, Fusenig NE. Regeneration of organized epithelial structure. J Invest Dermatol. 1983;81:189s–94s.PubMedCrossRefGoogle Scholar
  55. 55.
    Stark HJ, Baur M, Breitkreutz D, Mirancea N, Fusenig NE. Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol. 1999;112:681–91.PubMedCrossRefGoogle Scholar
  56. 56.
    Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell. 2000;103(5):745–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Barton CE, Johnson KN, Mays DM, Boehnke K, Shyr Y, Boukamp P, et al. Novel p63 target genes involved in paracrine signaling and keratinocyte differentiation. Cell Death Dis. 2010;1(9):e74.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Commandeur S, van Drongelen V, de Gruijl FR, El Ghalbzouri A. Epidermal growth factor receptor activation and inhibition in 3D in vitro models of normal skin and human cutaneous squamous cell carcinoma. Cancer Sci. 2012;103(12):2120–6.PubMedCrossRefGoogle Scholar
  59. 59.
    El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials. 2009;30(1):71–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol. 2007;86(11–12):731–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Muffler S, Stark H-J, Amoros M, Falkowska-Hansen B, Boehnke K, Bühring H-J, et al. A stable niche supports long-term maintenance of human epidermal stem cells in organotypic cultures. Stem Cells. 2008;26(10):2506–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Shahabeddin L, Berthod F, Damour O, Collombel C. Characterization of skin reconstructed on a chitosan-cross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol. 1990;3(2):107–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Laplante AF, Germain L, Auger FA, Moulin V. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 2001;15(13):2377–89.PubMedCrossRefGoogle Scholar
  64. 64.
    Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest. 1995;95(2):859–73.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60(5):1254–60.PubMedGoogle Scholar
  66. 66.
    Fong ELS, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials. 2016;77:164–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Sacks PG, Taylor DL, Racz T, Vasey T, Oke V, Schantz SP. A multicellular tumor spheroid model of cellular immunity against head and neck cancer. Cancer Immunol Immunother. 1990;32(3):195–200.PubMedCrossRefGoogle Scholar
  68. 68.
    Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G, et al. A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One. 2012;7(2):e30753.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelieres FP, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101(3):473–82.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Weiswald LB, Richon S, Massonnet G, Guinebretiere JM, Vacher S, Laurendeau I, et al. A short-term colorectal cancer sphere culture as a relevant tool for human cancer biology investigation. Br J Cancer. 2013;108(8):1720–31.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H, Tsujii M, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci U S A. 2011;108(15):6235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Endo H, Okami J, Okuyama H, Kumagai T, Uchida J, Kondo J, et al. Spheroid culture of primary lung cancer cells with neuregulin 1/HER3 pathway activation. J Thorac Oncol. 2013;8(2):131–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Ashley N, Jones M, Ouaret D, Wilding J, Bodmer WF. Rapidly derived colorectal cancer cultures recapitulate parental cancer characteristics and enable personalized therapeutic assays. J Pathol. 2014;234(1):34–45.PubMedCrossRefGoogle Scholar
  75. 75.
    Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev. 2014;24:68–73.PubMedCrossRefGoogle Scholar
  79. 79.
    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.PubMedCrossRefGoogle Scholar
  80. 80.
    Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci. 2015;112(43):201516689.CrossRefGoogle Scholar
  81. 81.
    Schuette et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nature Communications. 8:14262. doi: 10.1038/ncomms14262,,
  82. 82.
    Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res. 1990;186(2):227–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Bae SI, Kang GH, Kim YI, Lee BL, Kleinman HK, Kim WH. Development of intracytoplasmic lumens in a colon cancer cell line cultured on a non-adhesive surface. Cancer Biochem Biophys. 1999;17(1–2):35–47.PubMedGoogle Scholar
  84. 84.
    Emfietzoglou D, Kostarelos K, Papakostas A, Yang WH, Ballangrud A, Song H, et al. Liposome-mediated radiotherapeutics within avascular tumor spheroids: comparative dosimetry study for various radionuclides, liposome systems, and a targeting antibody. J Nucl Med. 2005;46(1):89–97.PubMedGoogle Scholar
  85. 85.
    Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9–10):1172–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Abu-Yousif AO, Rizvi I, Evans CL, Celli JP, Hasan T. PuraMatrix encapsulation of cancer cells. J Vis Exp. 2009;(34). pii:1692, doi: 10.3791/1692.
  88. 88.
    Sutherland RM, Inch WR, McCredie JA, Kruuv J. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;18(5):491–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83(2):173–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5–6):240–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Johns RA, Tichotsky A, Muro M, Spaeth JP, Le Cras TD, Rengasamy A. Halothane and isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine monophosphate accumulation in endothelial cell-vascular smooth muscle co-cultures independent of an effect on guanylyl cyclase activation. Anesthesiology. 1995;83(4):823–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Bell E. Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1995;1(2):163–79.PubMedCrossRefGoogle Scholar
  93. 93.
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3(5):519–32.PubMedCrossRefGoogle Scholar
  94. 94.
    Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2015;523(7562):520–2.PubMedCrossRefGoogle Scholar
  95. 95.
    Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 1995;55(10):2111–5.PubMedGoogle Scholar
  96. 96.
    McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21(11):1364–71.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6(6):569–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97(5):1340–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip. 2013;13(18):3538–47.PubMedCrossRefGoogle Scholar
  101. 101.
    Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb). 2013;5(9):1130–40.CrossRefGoogle Scholar
  103. 103.
    Zhang L, Wang J, Zhao L, Meng Q, Wang Q. Analysis of chemoresistance in lung cancer with a simple microfluidic device. Electrophoresis. 2010;31(22):3763–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama S. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices. 2011;13(4):731–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Li XJ, Li PCH. Contraction study of a single cardiac muscle cell in a microfluidic chip. Methods Mol Biol. 2006;321(1):199–225.PubMedGoogle Scholar
  106. 106.
    Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip. 2011;11(24):4165.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15(12):2688–99.PubMedCrossRefGoogle Scholar
  108. 108.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4(159):159ra147.PubMedCrossRefGoogle Scholar
  110. 110.
    Ataç B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, et al. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip. 2013;13(18):3555–61.PubMedCrossRefGoogle Scholar
  111. 111.
    Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Di Z, Klop MJ, Rogkoti VM, Le Devedec SE, van de Water B, Verbeek FJ, et al. Ultra high content image analysis and phenotype profiling of 3D cultured micro-tissues. PLoS One. 2014;9(10):e109688.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cavnar SP, Salomonsson E, Luker KE, Luker GD, Takayama S. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids. J Lab Autom. 2014;19(2):208–14.PubMedCrossRefGoogle Scholar
  114. 114.
    Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4(3):309–24.PubMedCrossRefGoogle Scholar
  115. 115.
    Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, et al. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen. 2007;12(7):925–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Lovitt CJ, Shelper TB, Avery VM. Miniaturized three-dimensional cancer model for drug evaluation. Assay Drug Dev Technol. 2013;11(7):435–48.PubMedCrossRefGoogle Scholar
  117. 117.
    Boehnke K, Iversen PW, Schumacher D, Lallena MJ, Haro R, Amat J, Haybaeck J, Liebs S, Lange M, Schäfer R, Regenbrecht CRA, Reinhard C, Velasco JA. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures. J Biomol Screen. 2016;21(9):931–41. doi: 10.1177/1087057116650965,,
  118. 118.
    Klein OJ, Jung YK, Evans CL. Longitudinal, quantitative monitoring of therapeutic response in 3D in vitro tumor models with OCT for high-content therapeutic screening. Methods. 2014;66(2):299–311.PubMedCrossRefGoogle Scholar
  119. 119.
    Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra AK, et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun. 2015;6:6220.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol. 2006;2(9):458–66.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhao L, Wientjes MG, Au JLS. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004;10(23):7994–8004.PubMedCrossRefGoogle Scholar
  122. 122.
    Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27(7):659–66.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–28.PubMedCrossRefGoogle Scholar
  124. 124.
    National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press; 2011.Google Scholar
  125. 125.
    Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci U S A. 2010;107(18):8352–6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Gerlach MM, Merz F, Wichmann G, Kubick C, Wittekind C, Lordick F, et al. Slice cultures from head and neck squamous cell carcinoma: a novel test system for drug susceptibility and mechanisms of resistance. Br J Cancer. 2014;110(2):479–88.PubMedCrossRefGoogle Scholar
  127. 127.
    Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol. 2013;15(6):670–81.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Halfter K, Ditsch N, Kolberg H-C, Fischer H, Hauzenberger T, von Koch FE, et al. Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy—the SpheroNEO study. BMC Cancer. 2015;15(1):519.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Burstein HJ, Mangu PB, Somerfield MR, Schrag D, Samson D, Holt L, et al. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J Clin Oncol. 2011;29(24):3328–30.PubMedCrossRefGoogle Scholar
  131. 131.
    Longati P, Jia X, Eimer J, Wagman A, Witt MR, Rehnmark S, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene. 2003;22(47):7396–402.PubMedCrossRefGoogle Scholar
  133. 133.
    Astashkina AI, Mann BK, Prestwich GD, Grainger DW. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials. 2012;33(18):4700–11.PubMedCrossRefGoogle Scholar
  134. 134.
    DesRochers TM, Suter L, Roth A, Kaplan DL. Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS One. 2013;8(3):e59219.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hrach J, Mueller SO, Hewitt P. Development of an in vitro liver toxicity prediction model based on longer term primary rat hepatocyte culture. Toxicol Lett. 2011;206(2):189–96.PubMedCrossRefGoogle Scholar
  136. 136.
    Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci. 2012;127(2):403–11.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandra Silvestri
    • 1
  • Dirk Schumacher
    • 2
    • 3
  • Maxine Silvestrov
    • 1
  • Reinhold Schäfer
    • 2
    • 3
  • Christoph Reinhard
    • 4
  • Jens Hoffmann
    • 5
  • Karsten Boehnke
    • 6
  • Christian R. A. Regenbrecht
    • 1
    Email author
  1. 1.CPO-Cellular Phenomics and Oncology Berlin-Buch GmbHBerlinGermany
  2. 2.Institute of Pathology and Comprehensive Cancer CenterCharité-Universitätsmedizin BerlinBerlinGermany
  3. 3.German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Eli Lilly and CompanyIndianapolisUSA
  5. 5.EPO-Experimental Pharmacology and Oncology Berlin-Buch GmbHBerlinGermany
  6. 6.Quantitative BiologyEli Lilly and CompanyAlcobendasSpain

Personalised recommendations