Advertisement

Molecular Classification of Breast Cancer

  • Iva BrčićEmail author
  • Marija Balić
Chapter
  • 604 Downloads

Abstract

Breast cancer is the most common cancer in women, and it is one of the most intensively studied cancers. Out of all diagnosed breast cancer in women, only a small proportion develops in a familial setting, and for the large majority of women, the risk of developing breast cancer is less known. In this chapter, we describe in situ and invasive breast cancers in detail, referring to different immunohistochemical and molecular events, as well as the molecular classification of this heterogeneous disease. We address most common and well-established biomarkers currently performed in breast cancer diagnostics. Finally, in the last part, we describe the implications of current knowledge on the further directions and address possible future perspectives in breast carcinogenesis.

Keywords

Breast Cancer Epidermal Growth Factor Receptor Androgen Receptor Invasive Breast Cancer Invasive Lobular Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Rakha EA, Ellis IO. Modern classification of breast cancer: should we stick with morphology or convert to molecular profile characteristics. Adv Anat Pathol. 2011;18:255–67. doi: 10.1097/PAP.0b013e318220f5d1.CrossRefPubMedGoogle Scholar
  3. 3.
    Allred C, Miller K, Viale G, Brogi E, Isola J. Molecular testing for estrogen receptor, progesterone receptor, and HER2. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. World Health Organisation classification of tumours of the breast. Lyon: IARC; 2012. p. 22–3.Google Scholar
  4. 4.
    Schnitt SJ, Allred C, Britton P, Ellis IO, Lakhani SR, Morrow M, et al. Ductal carcinoma in situ. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. World Health Organisation classification of tumours of the breast. Lyon: IARC; 2012. p. 90–4.Google Scholar
  5. 5.
    Ellis IO, Collins L, Ichihara S, MacGrogan G. Invasive carcinoma of no special type. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. World Health Organisation classification of tumours of the breast. Lyon: IARC; 2012. p. 33–4.Google Scholar
  6. 6.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM, et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! Program: a hospital-based retrospective cohort study. Lancet Oncol. 2009;10:1070–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. World Health Organisation classification of tumours of the breast. Lyon: IARC; 2012.Google Scholar
  9. 9.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95. doi: 10.1200/JCO.2009.25.6529.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;8:138–40.PubMedGoogle Scholar
  11. 11.
    Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.PubMedGoogle Scholar
  12. 12.
    Brouckaert O, Laenen A, Vanderhaegen J, Wildiers H, Leunen K, Amant F, et al. Applying the 2011 St Gallen panel of prognostic markers on a large single hospital cohort of consecutively treated primary operable breast cancers. Ann Oncol. 2012;23:2578–84.CrossRefPubMedGoogle Scholar
  13. 13.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013. doi: 10.1200/JCO.2013.50.9984.CrossRefPubMedGoogle Scholar
  14. 14.
    Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103:1656–64. doi: 10.1093/jnci/djr393.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50. doi: 10.1093/jnci/djp082.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cserni G, Vörös A, Liepniece-Karele I, Bianchi S, Vezzosi V, Grabau D, et al. Distribution pattern of the Ki67 labelling index in breast cancer and its implications for choosing cut-off values. Breast. 2014;23:259–63. doi: 10.1016/j.breast.2014.02.003.CrossRefPubMedGoogle Scholar
  17. 17.
    Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24:924–31. doi: 10.1038/modpathol.2011.54.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2012;31:1196–206. doi: 10.1038/onc.2011.301.CrossRefPubMedGoogle Scholar
  19. 19.
    Qi JP, Yang YL, Zhu H, Wang J, Jia Y, Liu N, et al. Expression of the androgen receptor and its correlation with molecular subtypes in 980 Chinese breast cancer patients. Breast Cancer (Auckl). 2012;6:1–8. doi: 10.4137/BCBCR.S8323.Google Scholar
  20. 20.
    Chia K, O’Brien M, Brown M, Lim E. Targeting the androgen receptor in breast cancer. Curr Oncol Rep. 2015;17:4. doi: 10.1007/s11912-014-0427-8.CrossRefPubMedGoogle Scholar
  21. 21.
    Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16:R7. doi: 10.1186/bcr3599.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24:4660–71. doi: 10.1038/sj.onc.1208561.CrossRefPubMedGoogle Scholar
  23. 23.
    McNamara KM, Sasano H. Androgen and breast cancer: an update. Curr Opin Endocrinol Diabetes Obes. 2016;23(3):249–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A, Easton D, Lakhani SR. Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res. 2007;9:R4. doi: 10.1186/bcr1636.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giannos A, Filipits M, Zagouri F, Brandstetter A, Tsigginou A, Sotiropoulou M, et al. Expression of ARs in triple negative breast cancer tumors: a potential prognostic factor? Onco Targets Ther. 2015;8:1843–7. doi: 10.2147/OTT.S78254.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96. doi: 10.1186/1471-2164-7-96.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74. doi: 10.1073/pnas.191367098.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23. doi: 10.1073/pnas.0932692100.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28:1684–91. doi: 10.1200/JCO.2009.24.9284.CrossRefPubMedGoogle Scholar
  31. 31.
    Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006;59:729–35. doi: 10.1136/jcp.2005.033043.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, et al. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 2006;49:22–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–7. doi: 10.1200/JCO.2009.25.9820.CrossRefPubMedGoogle Scholar
  34. 34.
    Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19:264–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9. doi: 10.1038/nature10933.PubMedGoogle Scholar
  36. 36.
    Livasy CA, Perou CM, Karaca G, Cowan DW, Maia D, Jackson S, et al. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol. 2007;38:197–204.CrossRefPubMedGoogle Scholar
  37. 37.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7. doi: 10.1200/jco.2008.18.1370.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2006;11:5678–85. doi: 10.1158/1078- 0432.ccr-04-2421.CrossRefGoogle Scholar
  39. 39.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68. doi: 10.1186/bcr2635.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell Jr JE. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci U S A. 1996;93:7673–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: how special are they? Mol Oncol. 2010;4:192–208. doi: 10.1016/j.molonc.2010.04.004.CrossRefPubMedGoogle Scholar
  42. 42.
    Bastien RR, Rodriguez-Lescure A, Ebbert MT, Prat A, Munárriz B, Rowe L, et al. PAM50 breast cancer subtyping by RT- qPCR and concordance with standard clinical molecular markers. BMC Med Genet. 2012;5:44. doi: 10.1186/1755-8794-5-44.:44-5.Google Scholar
  43. 43.
    Bayraktar S, Royce M, Stork-Sloots L, de Snoo F, Glück S. Molecular subtyping predicts pathologic tumor response in early-stage breast cancer treated with neoadjuvant docetaxel plus capecitabine with or without trastuzumab chemotherapy. Med Oncol. 2014;31:163. doi: 10.1007/s12032-014-0163-9.CrossRefPubMedGoogle Scholar
  44. 44.
    Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and predilection. Lancet. 2011;378:1812–23. doi: 10.1016/S0140-6736(11)61539-0.CrossRefPubMedGoogle Scholar
  45. 45.
    van de Vijver MJ. Molecular tests as prognostic factors in breast cancer. Virchows Arch. 2014;464:283–91. doi: 10.1007/s00428-014-1539-0.CrossRefPubMedGoogle Scholar
  46. 46.
    Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26:1533–46. doi: 10.1093/annonc/mdv221.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16:5222–32. doi: 10.1158/1078-0432.CCR-10-1282.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8. doi: 10.1200/JCO.2010.31.2835.CrossRefPubMedGoogle Scholar
  49. 49.
    Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90. doi: 10.1200/jco.2012.46.1558.CrossRefPubMedGoogle Scholar
  50. 50.
    Green AR, Powe DG, Rakha EA, Soria D, Lemetre C, Nolan CC, et al. Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers. Br J Cancer. 2013;109:1886–94. doi: 10.1038/bjc.2013.528.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462:1005–10. doi: 10.1038/nature08645.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52. doi: 10.1038/nature10983.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2012;24:157–67. doi: 10.1038/modpathol.2010.200.CrossRefGoogle Scholar
  55. 55.
    Lakhani SR, Rakha E, Simpson PT. Invasive lobular carcinoma. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. World Health Organisation classification of tumours of the breast. IARC: Lyon; 2012. p. 40–2.Google Scholar
  56. 56.
    Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 2001;92:404–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer. 2006;45:527–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Reis Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract. 2005;201:713–25.CrossRefPubMedGoogle Scholar
  59. 59.
    Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G, et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res. 2006;12:345–52.CrossRefPubMedGoogle Scholar
  60. 60.
    Gruel N, Lucchesi C, Raynal V, Rodrigues MJ, Pierron G, Goudefroye R, et al. Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur J Cancer. 2010;46:2399–407. doi: 10.1016/j.ejca. 2010.05.013.CrossRefPubMedGoogle Scholar
  61. 61.
    Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A, et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006;12:6652–62.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW, et al. Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell. 2009;16:413–24. doi: 10.1016/j.ccr.2009.09.029.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216:141–50. doi: 10.1002/path.2407.CrossRefPubMedGoogle Scholar
  64. 64.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.CrossRefPubMedGoogle Scholar
  65. 65.
    Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2009;117:273–80. doi: 10.1007/s10549-008-0197-9.CrossRefPubMedGoogle Scholar
  66. 66.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.CrossRefPubMedGoogle Scholar
  67. 67.
    Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.CrossRefPubMedGoogle Scholar
  68. 68.
    Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90:1138–45.CrossRefPubMedGoogle Scholar
  70. 70.
    Lakhani SR. The pathology of familial breast cancer: morphological aspects. Breast Cancer Res. 1999;1:31–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Marcus JN, Watson P, Page DL, Narod SA, Lenoir GM, Tonin P, et al. Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer. 1996;77:697–709.CrossRefPubMedGoogle Scholar
  72. 72.
    Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast Cancer Linkage Consortium. Lancet. 1997;349:1505–10.Google Scholar
  73. 73.
    van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.CrossRefGoogle Scholar
  74. 74.
    Larsen MJ, Kruse TA, Tan Q, Laenkholm AV, Bak M, Lykkesfeldt AE, et al. Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling. PLoS One. 2013;8:e64268.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Spurdle AB, Couch FJ, Parsons MT, McGuffog L, Barrowdale D, Bolla MK, et al. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res. 2014;16:3419. doi: 10.1186/s13058-014-0474-y.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223:307–17. doi: 10.1002/path.2808.CrossRefPubMedGoogle Scholar
  77. 77.
    Evans AJ, Pinder SE, Snead DR, Wilson AR, Ellis IO, Elston CW. The detection of ductal carcinoma in situ at mammographic screening enables the diagnosis of small, grade 3 invasive tumours. Br J Cancer. 1997;75:542–4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100:5974–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003;1:362–75.PubMedGoogle Scholar
  80. 80.
    Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187:396–402.CrossRefPubMedGoogle Scholar
  81. 81.
    Quinn CM, Ostrowski JL, Harkins L, Rice AJ, Loney DP. Loss of bcl-2 expression in ductal carcinoma in situ of the breast relates to poor histological differentiation and to expression of p53 and c-erbb-2 proteins. Histopathology. 1998;33:531–366.CrossRefPubMedGoogle Scholar
  82. 82.
    Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14:370–8. doi: 10.1158/1078-0432.CCR-07-1465.CrossRefGoogle Scholar
  83. 83.
    Zafrani B, Leroyer A, Fourquet A, Laurent M, Trophilme D, Validire P, et al. Mammographically-detected ductal in situ carcinoma of the breast analyzed with a new classification. A study of 127 cases: correlation with estrogen and progesterone receptors, p53 and c-erbb-2 proteins, and proliferative activity. Semin Diagn Pathol. 1994;11:208–14.PubMedGoogle Scholar
  84. 84.
    Buerger H, Mommers EC, Littmann R, Diallo R, Brinkschmidt C, Poremba C, et al. Correlation of morphologic and cytogenetic parameters of genetic instability with chromosomal alterations in in situ carcinomas of the breast. Am J Clin Pathol. 2000;114:854–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Hwang ES, DeVries S, Chew KL, Moore 2nd DH, Kerlikowske K, Thor A, et al. Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin Cancer Res. 2004;10:5160–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Simpson JF, Page DL. The p53 tumor suppressor gene in ductal carcinoma in situ of the breast. Am J Pathol. 2000;156:5–6.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988;319:1239–45.CrossRefPubMedGoogle Scholar
  88. 88.
    Adeyinka A, Emberley E, Niu Y, Snell L, Murphy LC, Sowter H, et al. Analysis of gene expression in ductal carcinoma in situ of the breast. Clin Cancer Res. 2002;8:3788–95.PubMedGoogle Scholar
  89. 89.
    Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ. Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res. 2006;8:R61.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cowell CF, Weigelta B, Sakrb RA, Nga CKY, Hicksc J, Kingb TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol. 2013;7:859–69. doi: 10.1016/j.molonc.2013.07.005.CrossRefPubMedGoogle Scholar
  91. 91.
    Hernandez L, Wilkerson PM, Lambros MB, Campion-Flora A, Rodrigues DN, Gauthier A, et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol. 2012;227:42–52.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A, Ortiz-Melendez C, Lee WJ, Christensen R, et al. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol. 2012;181:1807–22.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bryan BB, Schnitt SJ, Collins LC. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol. 2006;19:617–21.CrossRefPubMedGoogle Scholar
  94. 94.
    Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer. 2011;104:120–7. doi: 10.1038/sj.bjc.6606021.CrossRefPubMedGoogle Scholar
  95. 95.
    Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S, et al. Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol. 2010;4:357–68. doi: 10.1016/j.molonc.2010.06.007.CrossRefPubMedGoogle Scholar
  96. 96.
    Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y, et al. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res. 2008;10:R67. doi: 10.1186/bcr2128.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Roses RE, Paulson EC, Sharma A, Schueller JE, Nisenbaum H, Weinstein S, et al. HER-2/neu overexpression as a predictor for the transition from in situ to invasive breast cancer. Cancer Epidemiol Biomark Prev. 2009;18:1386–69. doi: 10.1158/1055-9965.EPI-08-1101.CrossRefGoogle Scholar
  98. 98.
    Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16:1465–79.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lari SA, Kuerer HM. Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer. 2011;2:232–61.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Invasive Breast Cancer Version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14:324–54.CrossRefGoogle Scholar
  101. 101.
    Tsikitis VL, Chung MA. Biology of ductal carcinoma in situ classification based on biologic potential. Am J Clin Oncol. 2006;29:305–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Pathology, Medical University of GrazGrazAustria
  2. 2.Division of Oncology, Department of Internal MedicineMedical University of GrazGrazAustria

Personalised recommendations