Skip to main content

NF-κB and Its Implication in Liver Health and Cancer Development

  • Chapter
  • First Online:
  • 754 Accesses

Abstract

Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) belongs to one of the best described and most intensively studied transcription factors in biochemistry in the last 30 years. The NF-κB signaling cascade exists in two variants, the canonical and noncanonical pathway, and its transcription factors are key regulators of several biochemical processes like immune responses, inflammation, survival, and cellular development and growth.

Examination of various transgenic mouse models targeting NF-κB itself or signaling members discovered the implication of NF-κB in chronic inflammatory diseases and cancer development in different organs as in the skin, intestine, and liver.

In this review the focus lies on the central organ of metabolic and inflammatory processes: the liver. It seems that NF-κB is pivotal for the homeostasis in the different hepatic cell types concerning hepatic failure, fibrosis, and HCC progression. NF-κB has the ability to be a potential target in the attempt to circumvent or medicate liver fibrosis and HCC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16. doi:10.1016/0092-8674(86)90346-6.

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ, Karin M. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71. doi:10.1056/NEJM199704103361506.

    Article  CAS  PubMed  Google Scholar 

  3. Camandola S, Mattson MP. NF-kappa B as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets. 2007;11:123–32. doi:10.1517/14728222.11.2.123.

    Article  CAS  PubMed  Google Scholar 

  4. MacLellan WR, Schneider MD. Death by design programmed cell death in cardiovascular biology and disease. Circ Res. 1997;81:137–44. doi:10.1161/01.RES.81.2.137.

    Article  CAS  PubMed  Google Scholar 

  5. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99. doi:10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, Weber A, Weiskirchen R, Liedtke C, Gassler N, Müller M, de Vos R, Wolf MJ, Boege Y, Seleznik GM, Zeller N, Erny D, Fuchs T, Zoller S, Cairo S, Buendia M-A, Prinz M, Akira S, Tacke F, Heikenwalder M, Trautwein C, Luedde T. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell. 2010;17:481–96. doi:10.1016/j.ccr.2010.03.021.

    Article  CAS  PubMed  Google Scholar 

  7. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien P-A, Thimme R, Blum H, Nedospasov SA, Zatloukal K, Ramzan M, Ciesek S, Pietschmann T, Marche PN, Karin M, Kopf M, Browning JL, Aguzzi A, Heikenwalder M. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16:295–308. doi:10.1016/j.ccr.2009.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11:119–32. doi:10.1016/j.ccr.2006.12.016.

    Article  CAS  PubMed  Google Scholar 

  9. Maeda S, Kamata H, Luo J-L, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121:977–90. doi:10.1016/j.cell.2005.04.014.

    Article  CAS  PubMed  Google Scholar 

  10. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289–301. doi:10.1038/nri3646.

    Article  CAS  PubMed  Google Scholar 

  11. Augustin R, Fraune S, Bosch TCG. How Hydra senses and destroys microbes. Semin Immunol. 2010;22:54–8. doi:10.1016/j.smim.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  12. Hemmrich G, Miller DJ, Bosch TCG. The evolution of immunity: a low-life perspective. Trends Immunol. 2007;28:449–54. doi:10.1016/j.it.2007.08.003.

    Article  CAS  PubMed  Google Scholar 

  13. Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol. 2011;28:1687–702. doi:10.1093/molbev/msq349.

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6. doi:10.1038/nature09201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25:6680–4. doi:10.1038/sj.onc.1209954.

    Article  CAS  PubMed  Google Scholar 

  16. Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from C. elegans and primitive invertebrates. Nat Rev Immunol. 2010;10:47–58. doi:10.1038/nri2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–79. doi:10.1146/annurev.iy.12.040194.001041.

    Article  CAS  PubMed  Google Scholar 

  18. Blank V, Kourilsky P, Israël A. NF-κB and related proteins: rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992;17:135–40. doi:10.1016/0968-0004(92)90321-Y.

    Article  CAS  PubMed  Google Scholar 

  19. Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views. Oncogene. 1999;18:6845–52. doi:10.1038/sj.onc.1203224.

    Article  CAS  PubMed  Google Scholar 

  20. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344–62. doi:10.1016/j.cell.2008.01.020.

    Article  CAS  PubMed  Google Scholar 

  21. Phelps CB, Sengchanthalangsy LL, Malek S, Ghosh G. Mechanism of κB DNA binding by Rel/NF-κB dimers. J Biol Chem. 2000;275:24392–9. doi:10.1074/jbc.M003784200.

    Article  CAS  PubMed  Google Scholar 

  22. Saha A, Hammond CE, Trojanowska M, Smolka AJ. Helicobacter pylori-induced H,K-ATPase alpha-subunit gene repression is mediated by NF-kappaB p50 homodimer promoter binding. Am J Physiol Gastrointest Liver Physiol. 2008;294:G795–807. doi:10.1152/ajpgi.00431.2007.

    Article  CAS  PubMed  Google Scholar 

  23. Inoue J, Kerr LD, Rashid D, Davis N, Bose HR, Verma IM. Direct association of pp40/I kappa B beta with rel/NF-kappa B transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci U S A. 1992;89:4333–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huxford T, Huang D-B, Malek S, Ghosh G. The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell. 1998;95:759–70. doi:10.1016/S0092-8674(00)81699-2.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998;95:749–58.

    Article  CAS  PubMed  Google Scholar 

  26. Malek S, Huang D-B, Huxford T, Ghosh S, Ghosh G. X-ray crystal structure of an IκBβ·NF-κB p65 homodimer complex. J Biol Chem. 2003;278:23094–100. doi:10.1074/jbc.M301022200.

    Article  CAS  PubMed  Google Scholar 

  27. Huxford T, Ghosh G. A structural guide to proteins of the NF-κB signaling module. Cold Spring Harb Perspect Biol. 2009;1:a000075. doi:10.1101/cshperspect.a000075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Michel F. Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family. EMBO J. 2001;20:6180–90. doi:10.1093/emboj/20.22.6180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011;12:715–23. doi:10.1038/ni.2060.

    Article  CAS  PubMed  Google Scholar 

  30. Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–15. doi:10.1038/cr.2010.178.

    Article  CAS  PubMed  Google Scholar 

  31. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12:695–708. doi:10.1038/ni.2065.

    Article  CAS  PubMed  Google Scholar 

  32. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999;284:309–13.

    Article  CAS  PubMed  Google Scholar 

  33. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 1997;388:548–54. doi:10.1038/41493.

    Article  CAS  PubMed  Google Scholar 

  34. Kanayama A, Seth RB, Sun L, Ea C-K, Hong M, Shaito A, Chiu Y-H, Deng L, Chen ZJ. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell. 2004;15:535–48. doi:10.1016/j.molcel.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  35. Roh YS, Song J, Seki E. TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol. 2014;49:185–94. doi:10.1007/s00535-013-0931-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51. doi:10.1038/35085597.

    Article  CAS  PubMed  Google Scholar 

  37. Yu Y, Ge N, Xie M, Sun W, Burlingame S, Pass AK, Nuchtern JG, Zhang D, Fu S, Schneider MD, Fan J, Yang J. Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFκB and AP-1 activation as well as IL-6 gene expression. J Biol Chem. 2008;283:24497–505. doi:10.1074/jbc.M802825200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coope HJ, Atkinson PGP, Huhse B, Belich M, Janzen J, Holman MJ, Klaus GGB, Johnston LH, Ley SC. CD40 regulates the processing of NF‐κB2 p100 to p52. EMBO J. 2002;21:5375–85. doi:10.1093/emboj/cdf542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem. 2003;278:23278–84. doi:10.1074/jbc.M300106200.

    Article  CAS  PubMed  Google Scholar 

  40. Dejardin E. The alternative NF-κB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol. 2006;72:1161–79. doi:10.1016/j.bcp.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  41. Fong A, Sun S-C. Genetic evidence for the essential role of β-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J Biol Chem. 2002;277:22111–4.

    Article  CAS  PubMed  Google Scholar 

  42. Shih VF-S, Tsui R, Caldwell A, Hoffmann A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 2011;21:86–102. doi:10.1038/cr.2010.161.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001;7:401–9.

    Article  CAS  PubMed  Google Scholar 

  44. Liang C, Zhang M, Sun S-C. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870. Cell Signal. 2006;18:1309–17. doi:10.1016/j.cellsig.2005.10.011.

    Article  CAS  PubMed  Google Scholar 

  45. Sun S-C. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21:71–85. doi:10.1038/cr.2010.177.

    Article  CAS  PubMed  Google Scholar 

  46. Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett. 2012;316:113–25. doi:10.1016/j.canlet.2011.10.036.

    Article  CAS  PubMed  Google Scholar 

  47. Gao C, Huang W, Kanasaki K, Xu Y, Gao C, Huang W, Kanasaki K, Xu Y. The role of ubiquitination and sumoylation in diabetic nephropathy, the role of ubiquitination and sumoylation in diabetic nephropathy. BioMed Res Int. 2014;2014:e160692. doi:10.1155/2014/160692.

    Google Scholar 

  48. Mabb AM, Miyamoto S. SUMO and NF-kappaB ties. Cell Mol Life Sci. 2007;64:1979–96. doi:10.1007/s00018-007-7005-2.

    Article  CAS  PubMed  Google Scholar 

  49. Ehlken H, Krishna-Subramanian S, Ochoa-Callejero L, Kondylis V, Nadi NE, Straub BK, Schirmacher P, Walczak H, Kollias G, Pasparakis M. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout. Cell Death Differ. 2014;21:1721–32. doi:10.1038/cdd.2014.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene. 2006;25:6781–99. doi:10.1038/sj.onc.1209944.

    Article  CAS  PubMed  Google Scholar 

  51. Inokuchi S, Aoyama T, Miura K, Österreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA, Seki E. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci U S A. 2010;107:844–9. doi:10.1073/pnas.0909781107.

    Article  CAS  PubMed  Google Scholar 

  52. Luedde T, Assmus U, Wüstefeld T, Meyer zu Vilsendorf A, Roskams T, Schmidt-Supprian M, Rajewsky K, Brenner DA, Manns MP, Pasparakis M, Trautwein C. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest. 2005;115:849–59. doi:10.1172/JCI200523493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van T-M, Lee TH, Chan FKM, Pasparakis M, Kelliher MA. RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol. 2014;193(4):1539–43. doi:10.4049/jimmunol.1400590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martini FH, Timmons MJ, Tallitsch RB. Human anatomy. 8th ed. Boston, MA: Pearson; 2014.

    Google Scholar 

  55. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27. doi:10.1056/NEJMra1001683.

    Article  CAS  PubMed  Google Scholar 

  56. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76. doi:10.1053/j.gastro.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  57. Lavrik IN, Krammer PH. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012;19:36–41. doi:10.1038/cdd.2011.155.

    Article  CAS  PubMed  Google Scholar 

  58. Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014;21:1350–64. doi:10.1038/cdd.2014.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schleich K, Warnken U, Fricker N, Öztürk S, Richter P, Kammerer K, Schnölzer M, Krammer PH, Lavrik IN. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell. 2012;47:306–19. doi:10.1016/j.molcel.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  60. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59. doi:10.1016/j.bbamcr.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  61. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65. doi:10.1038/sj.cdd.4401189.

    Article  CAS  PubMed  Google Scholar 

  62. Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal. 2013;8:7. doi:10.1186/1750-2187-8-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158. doi:10.1101/cshperspect.a000158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wertz IE, Dixit VM. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2:a003350. doi:10.1101/cshperspect.a003350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell. 2009;36:831–44. doi:10.1016/j.molcel.2009.10.013.

    Article  CAS  PubMed  Google Scholar 

  66. Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol. 2012;10:23. doi:10.1186/1741-7007-10-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996;274:782–4.

    Article  CAS  PubMed  Google Scholar 

  68. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature. 1995;376:167–70. doi:10.1038/376167a0.

    Article  CAS  PubMed  Google Scholar 

  69. Doi TS, Marino MW, Takahashi T, Yoshida T, Sakakura T, Old LJ, Obata Y. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci U S A. 1999;96:2994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosenfeld ME, Prichard L, Shiojiri N, Fausto N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol. 2000;156:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci U S A. 1999;96:11848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iimuro Y, Nishiura T, Hellerbrand C, Behrns KE, Schoonhoven R, Grisham JW, Brenner DA. NFkappaB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest. 1998;101:802–11. doi:10.1172/JCI483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gerondakis S, Grumont R, Rourke I, Grossmann M. The regulation and roles of Rel/NF-κB transcription factors during lymphocyte activation. Curr Opin Immunol. 1998;10:353–9. doi:10.1016/S0952-7915(98)80175-1.

    Article  CAS  PubMed  Google Scholar 

  74. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science. 1999a;284:321–5.

    Article  CAS  PubMed  Google Scholar 

  75. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999b;189:1839–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity. 1999;10:421–9.

    Article  CAS  PubMed  Google Scholar 

  77. Rudolph D, Yeh W-C, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ, Mak TW. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 2000;14:854–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R, Karin M. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science. 1999;284:316–20.

    Article  CAS  PubMed  Google Scholar 

  79. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, Sanjo H, Yoshikawa K, Terada N, Akira S. Limb and skin abnormalities in mice lacking IKKalpha. Science. 1999;284:313–6.

    Article  CAS  PubMed  Google Scholar 

  80. Geisler F, Algül H, Paxian S, Schmid RM. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology. 2007;132:2489–503. doi:10.1053/j.gastro.2007.03.033.

    Article  CAS  PubMed  Google Scholar 

  81. Maeda S, Chang L, Li Z-W, Luo J-L, Leffert H, Karin M. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity. 2003;19:725–37.

    Article  CAS  PubMed  Google Scholar 

  82. Arkan MC, Hevener AL, Greten FR, Maeda S, Li Z-W, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8. doi:10.1038/nm1185.

    Article  CAS  PubMed  Google Scholar 

  83. Luedde T, Heinrichsdorff J, de Lorenzi R, De Vos R, Roskams T, Pasparakis M. IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc Natl Acad Sci U S A. 2008;105:9733–8. doi:10.1073/pnas.0800198105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liedtke C, Bangen J-M, Freimuth J, Beraza N, Lambertz D, Cubero FJ, Hatting M, Karlmark KR, Streetz KL, Krombach GA, Tacke F, Gassler N, Riethmacher D, Trautwein C. Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology. 2011;141:2176–87. doi:10.1053/j.gastro.2011.08.037.

    Article  CAS  PubMed  Google Scholar 

  85. Papa S, Bubici C, Zazzeroni F, Franzoso G. Mechanisms of liver disease: the crosstalk between the NF-κB and JNK pathways. Biol Chem. 2009;390:965–76. doi:10.1515/BC.2009.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290:G583–9. doi:10.1152/ajpgi.00422.2005.

    Article  CAS  PubMed  Google Scholar 

  87. Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-κB and JNK activation in hepatocytes. Biochem Pharmacol. 2006;72:1090–101. doi:10.1016/j.bcp.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  88. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    Article  CAS  PubMed  Google Scholar 

  89. Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57:283–95. doi:10.1080/15216540500097111.

    Article  CAS  PubMed  Google Scholar 

  90. Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000;25:257–60. doi:10.1016/S0968-0004(00)01595-4.

    Article  CAS  PubMed  Google Scholar 

  91. Schieven GL. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005;5:921–8. doi:10.2174/1568026054985902.

    Article  CAS  PubMed  Google Scholar 

  92. Heinrichsdorff J, Luedde T, Perdiguero E, Nebreda AR, Pasparakis M. p38 alpha MAPK inhibits JNK activation and collaborates with IkappaB kinase 2 to prevent endotoxin-induced liver failure. EMBO Rep. 2008;9:1048–54. doi:10.1038/embor.2008.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  94. Li W, Tan D, Zenali MJ, Brown RE. Constitutive activation of nuclear factor-kappa B (NF-kB) signaling pathway in fibrolamellar hepatocellular carcinoma. Int J Clin Exp Pathol. 2010;3:238–43.

    CAS  Google Scholar 

  95. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2000;89:2274–81.

    Article  CAS  PubMed  Google Scholar 

  96. Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, van den Bergh Weerman MA, Verkruisen RP, Groen AK, Oude Elferink RP. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol. 1994;145:1237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6. doi:10.1038/nature02924.

    Article  CAS  PubMed  Google Scholar 

  98. Kondylis V, Polykratis A, Ehlken H, Ochoa-Callejero L, Straub BK, Krishna-Subramanian S, Van T-M, Curth H-M, Heise N, Weih F, Klein U, Schirmacher P, Kelliher M, Pasparakis M. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell. 2015;28:582–98. doi:10.1016/j.ccell.2015.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kamata H, Honda S-I, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–61. doi:10.1016/j.cell.2004.12.041.

    Article  CAS  PubMed  Google Scholar 

  100. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121:2373–80. doi:10.1002/ijc.23173.

    Article  CAS  PubMed  Google Scholar 

  101. Lasagna N, Fantappiè O, Solazzo M, Morbidelli L, Marchetti S, Cipriani G, Ziche M, Mazzanti R. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res. 2006;66:2673–82. doi:10.1158/0008-5472.CAN-05-2290.

    Article  CAS  PubMed  Google Scholar 

  102. Ying L, Hofseth AB, Browning DD, Nagarkatti M, Nagarkatti PS, Hofseth LJ. Nitric oxide inactivates the retinoblastoma pathway in chronic inflammation. Cancer Res. 2007;67:9286–93. doi:10.1158/0008-5472.CAN-07-2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Calvisi DF, Pinna F, Ladu S, Pellegrino R, Muroni MR, Simile MM, Frau M, Tomasi ML, Miglio MRD, Seddaiu MA, Daino L, Sanna V, Feo F, Pascale RM. Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis. 2008;29:1639–47. doi:10.1093/carcin/bgn155.

    Article  CAS  PubMed  Google Scholar 

  104. Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 2015;22:512–8. doi:10.1002/jhbp.245.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sunami Y, Leithäuser F, Gul S, Fiedler K, Güldiken N, Espenlaub S, Holzmann K-H, Hipp N, Sindrilaru A, Luedde T, Baumann B, Wissel S, Kreppel F, Schneider M, Scharffetter-Kochanek K, Kochanek S, Strnad P, Wirth T. Hepatic activation of IKK/NFκB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatol. Baltim. Md. 2012;56:1117–28. doi:10.1002/hep.25711.

    Article  CAS  Google Scholar 

  106. Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr MJ, Degitz K, Mann DA. Persistent activation of nuclear factor-κB in cultured rat hepatic stellate cells involves the induction of potentially novel rel-like factors and prolonged changes in the expression of IκB family proteins. Hepatology. 1999;30:761–9. doi:10.1002/hep.510300327.

    Article  CAS  PubMed  Google Scholar 

  107. Oakley F, Trim N, Constandinou CM, Ye W, Gray AM, Frantz G, Hillan K, Kendall T, Benyon RC, Mann DA, Iredale JP. Hepatocytes express nerve growth factor during liver injury: evidence for paracrine regulation of hepatic stellate cell apoptosis. Am J Pathol. 2003;163:1849–58. doi:10.1016/S0002-9440(10)63544-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saile B, Matthes N, El Armouche H, Neubauer K, Ramadori G. The bcl, NFκB and p53/p21WAF1 systems are involved in spontaneous apoptosis and in the anti-apoptotic effect of TGF-β or TNF-α on activated hepatic stellate cells. Eur J Cell Biol. 2001;80:554–61. doi:10.1078/0171-9335-00182.

    Article  CAS  PubMed  Google Scholar 

  109. Oakley F, Teoh V, Ching-A-Sue G, Bataller R, Colmenero J, Jonsson JR, Eliopoulos AG, Watson MR, Manas D, Mann DA. Angiotensin II activates IκB kinase phosphorylation of RelA at Ser536 to promote myofibroblast survival and liver fibrosis. Gastroenterology. 2009;136:2334–2344.e1. doi:10.1053/j.gastro.2009.02.081.

    Article  CAS  PubMed  Google Scholar 

  110. Kluwe J, Pradere J-P, Gwak G-Y, Mencin A, Minicis SD, Osterreicher CH, Colmenero J, Bataller R, Schwabe RF. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology. 2010;138:347–59. doi:10.1053/j.gastro.2009.09.015.

    Article  CAS  PubMed  Google Scholar 

  111. Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, Wiest R, Schölmerich J, Obermeier F, Hellerbrand C. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun. 2008;376:271–6. doi:10.1016/j.bbrc.2008.08.096.

    Article  PubMed  CAS  Google Scholar 

  112. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32. doi:10.1038/nm1663.

    Article  CAS  PubMed  Google Scholar 

  113. Goossens N, Hoshida Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin Mol Hepatol. 2015;21:105–14. doi:10.3350/cmh.2015.21.2.105.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, Szabo G. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127:1513–24.

    Article  CAS  PubMed  Google Scholar 

  115. Zhao L-J, Zhao P, Chen Q-L, Ren H, Pan W, Qi Z-T. Mitogen-activated protein kinase signalling pathways triggered by the hepatitis C virus envelope protein E2: implications for the prevention of infection. Cell Prolif. 2007;40:508–21. doi:10.1111/j.1365-2184.2007.00453.x.

    Article  CAS  PubMed  Google Scholar 

  116. Lin W, Tsai W-L, Shao R-X, Wu G, Peng LF, Barlow LL, Chung WJ, Zhang L, Zhao H, Jang J-Y, Chung RT. HCV regulates TGF-β1 production through the generation of reactive oxygen species in an NFκB-dependent manner. Gastroenterology. 2010;138:2509–2518.e1. doi:10.1053/j.gastro.2010.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, Fusco DN, Brisac C, Schaefer EA, Cai D, Peng LF, Maneekarn N, Lin W, Chung RT. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487. doi:10.1038/srep22487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kanda T, Yokosuka O, Nagao K, Saisho H. State of hepatitis C viral replication enhances activation of NF-kB- and AP-1-signaling induced by hepatitis B virus X. Cancer Lett. 2006;234:143–8. doi:10.1016/j.canlet.2005.03.030.

    Article  CAS  PubMed  Google Scholar 

  119. Hildt E, Hofschneider PH. The PreS2 activators of the hepatitis B virus: activators of tumour promoter pathways. Recent Results Cancer Res. 1998;154:315–29.

    Article  CAS  PubMed  Google Scholar 

  120. You LR, Chen CM, Lee YH. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J Virol. 1999;73:1672–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bose S, Banerjee AK. Innate immune response against nonsegmented negative strand RNA viruses. J Interferon Cytokine Res. 2003;23:401–12. doi:10.1089/107999003322277810.

    Article  CAS  PubMed  Google Scholar 

  122. Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. Convergence of the NF-κB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann N Y Acad Sci. 2003;1010:237–48. doi:10.1196/annals.1299.042.

    Article  CAS  PubMed  Google Scholar 

  123. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004;24:439–54. doi:10.1089/1079990041689665.

    Article  CAS  PubMed  Google Scholar 

  124. Maher SG, Romero-Weaver AL, Scarzello AJ, Gamero AM. Interferon: cellular executioner or white knight? Curr Med Chem. 2007;14:1279–89.

    Article  CAS  PubMed  Google Scholar 

  125. Sasaki R, Kanda T, Nakamura M, Nakamoto S, Haga Y, Wu S, Shirasawa H, Yokosuka O. Possible involvement of hepatitis B virus infection of hepatocytes in the attenuation of apoptosis in hepatic stellate cells. PLoS One. 2016;11:e0146314. doi:10.1371/journal.pone.0146314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27:6228–44. doi:10.1038/onc.2008.300.

    Article  CAS  PubMed  Google Scholar 

  127. Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin North Am. 2010;39:1–7. doi:10.1016/j.gtc.2009.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22. doi:10.1016/j.cmet.2010.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling. Cell Death Dis. 2015;6:e2037. doi:10.1038/cddis.2015.381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy M-F, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE. Variations in DNA elucidate molecular networks that cause disease. Nature. 2008b;452:429–35. doi:10.1038/nature06757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K. Genetics of gene expression and its effect on disease. Nature. 2008;452:423–8. doi:10.1038/nature06758.

    Article  CAS  PubMed  Google Scholar 

  132. Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J, Torosyan G, Majid S, Falkard B, Kleinhanz RR, Karlsson J, Castellani LW, Mumick S, Wang K, Xie T, Coon M, Zhang C, Estrada-Smith D, Farber CR, Wang SS, van Nas A, Ghazalpour A, Zhang B, Macneil DJ, Lamb JR, Dipple KM, Reitman ML, Mehrabian M, Lum PY, Schadt EE, Lusis AJ, Drake TA. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet. 2009;41:415–23. doi:10.1038/ng.325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3. doi:10.1038/4441022a.

    Article  CAS  PubMed  Google Scholar 

  134. Nguyen SD, Sok D-E. Effect of 3,4-dihydroxyphenylalanine on Cu(2+)-induced inactivation of HDL-associated paraoxonasel and oxidation of HDL; inactivation of paraoxonasel activity independent of HDL lipid oxidation. Free Radic Res. 2004;38:969–76. doi:10.1080/10715760400000943.

    Article  PubMed  CAS  Google Scholar 

  135. Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, Prada PO, Hirabara SM, Schenka AA, Araújo EP, Vassallo J, Curi R, Velloso LA, Saad MJA. Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56:1986–98. doi:10.2337/db06-1595.

    Article  CAS  PubMed  Google Scholar 

  136. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–31. doi:10.1126/science.1179721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chiang S-H, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, Ma J-T, Zhou J, Qi N, Westcott D, Delproposto JB, Blackwell TS, Yull FE, Saltiel AR. The protein kinase IKKɛ regulates energy balance in obese mice. Cell. 2009;138:961–75. doi:10.1016/j.cell.2009.06.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90. doi:10.1038/nm1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest. 2006;116:3015–25. doi:10.1172/JCI28898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity. 2008;16:1248–55. doi:10.1038/oby.2008.210.

    Article  CAS  PubMed  Google Scholar 

  141. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C, Peiretti F, Verdier M, Juhan-Vague I, Tanti JF, Burcelin R, Alessi MC. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue vin response to a high-fat diet. Diabetologia. 2007;50:1267–76. doi:10.1007/s00125-007-0654-8.

  142. Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem. 2011;22:136–41. doi:10.1016/j.jnutbio.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  143. Nguyen MTA, Favelyukis S, Nguyen A-K, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282:35279–92. doi:10.1074/jbc.M706762200.

    Article  CAS  PubMed  Google Scholar 

  144. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91. doi:10.1126/science.7678183.

    Article  CAS  PubMed  Google Scholar 

  145. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature. 1997;389:610–4. doi:10.1038/39335.

    Article  CAS  PubMed  Google Scholar 

  146. Wunderlich FT, Ströhle P, Könner AC, Gruber S, Tovar S, Brönneke HS, Juntti-Berggren L, Li L-S, van Rooijen N, Libert C, Berggren P-O, Brüning JC. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010;12:237–49. doi:10.1016/j.cmet.2010.06.011.

    Article  CAS  PubMed  Google Scholar 

  147. Mendes-Braz M, Elias-Miró M, Jiménez-Castro MB, Casillas-Ramírez A, Ramalho FS, Peralta C. The current state of knowledge of hepatic ischemia-reperfusion injury based on its study in experimental models. J Biomed Biotechnol. 2012;2012:298657. doi:10.1155/2012/298657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59:1094–106. doi:10.1016/j.jhep.2013.06.017.

    Article  PubMed  Google Scholar 

  149. Gao W, Bentley RC, Madden JF, Clavien P-A. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology. 1998;27:1652–60. doi:10.1002/hep.510270626.

    Article  CAS  PubMed  Google Scholar 

  150. Kohli V, Selzner M, Madden JF, Bentley RC, Clavien PA. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. Transplantation. 1999;67:1099–105.

    Article  CAS  PubMed  Google Scholar 

  151. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013;13:2797–804. doi:10.1111/ajt.12448.

    Article  CAS  PubMed  Google Scholar 

  152. Massip-Salcedo M, Roselló-Catafau J, Prieto J, Avíla MA, Peralta C. The response of the hepatocyte to ischemia. Liver Int. 2007;27:6–16. doi:10.1111/j.1478-3231.2006.01390.x.

    Article  CAS  PubMed  Google Scholar 

  153. Rauen U, Kerkweg U, Weisheit D, Petrat F, Sustmann R, de Groot H. Cold-induced apoptosis of hepatocytes: mitochondrial permeability transition triggered by nonmitochondrial chelatable iron. Free Radic Biol Med. 2003;35:1664–78.

    Article  CAS  PubMed  Google Scholar 

  154. Theruvath TP, Czerny C, Ramshesh VK, Zhong Z, Chavin KD, Lemasters JJ. C-Jun N-terminal kinase 2 promotes graft injury via the mitochondrial permeability transition after mouse liver transplantation. Am J Transplant. 2008;8:1819–28. doi:10.1111/j.1600-6143.2008.02336.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shuh M, Bohorquez H, Loss GE, Cohen AJ. Tumor necrosis factor-α: life and death of hepatocytes during liver ischemia/reperfusion injury. Ochsner J. 2013;13:119–30.

    PubMed  PubMed Central  Google Scholar 

  156. Suetsugu H, Iimuro Y, Uehara T, Nishio T, Harada N, Yoshida M, Hatano E, Son G, Fujimoto J, Yamaoka Y. Nuclear factor κB inactivation in the rat liver ameliorates short term total warm ischaemia/reperfusion injury. Gut. 2005;54:835–42. doi:10.1136/gut.2004.043034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Uchinami H, Yamamoto Y, Kume M, Yonezawa K, Ishikawa Y, Taura K, Nakajima A, Hata K, Yamaoka Y. Effect of heat shock preconditioning on NF-κB/I-κB pathway during I/R injury of the rat liver. Am J Physiol Gastrointest Liver Physiol. 2002;282:G962–71. doi:10.1152/ajpgi.00466.2001.

    Article  CAS  PubMed  Google Scholar 

  158. Ruland J. Return to homeostasis: downregulation of NF-κB responses. Nat Immunol. 2011;12:709–14. doi:10.1038/ni.2055.

    Article  CAS  PubMed  Google Scholar 

  159. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9. doi:10.1038/nature02794.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity. 2000;12:301–11.

    Article  CAS  PubMed  Google Scholar 

  161. Ramsey HE, Da Silva CG, Longo CR, Csizmadia E, Studer P, Patel VI, Damrauer SM, Siracuse JJ, Daniel S, Ferran C. A20 protects mice from lethal liver ischemia reperfusion injury by increasing peroxisome proliferator-activated receptor-α expression. Liver Transpl. 2009;15:1613–21. doi:10.1002/lt.21879.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sakai N, Van Sweringen HL, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB. Receptor activator of nuclear factor-κB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatol. Baltim. Md. 2012;55:888–97. doi:10.1002/hep.24756.

    Article  CAS  Google Scholar 

  163. Marinò M, Morabito E, Altea MA, Ambrogini E, Oliveri F, Brunetto MR, Pollina LE, Campani D, Vitti P, Bartalena L, Pincheral A, Marcocci C. Autoimmune hepatitis during intravenous glucocorticoid pulse therapy for Graves’ ophthalmopathy treated successfully with glucocorticoids themselves. J Endocrinol Invest. 2005;28:280–4.

    Article  PubMed  Google Scholar 

  164. Bae M-K, Kim S-H, Jeong J-W, Lee YM, Kim H-S, Kim S-R, Yun I, Bae S-K, Kim K-W. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15:1557–62.

    CAS  PubMed  Google Scholar 

  165. Chen D, Milacic V, Chen MS, Wan SB, Lam WH, Huo C, Landis-Piwowar KR, Cui QC, Wali A, Chan TH, Dou QP. Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol. 2008a;23:487–96.

    PubMed  PubMed Central  Google Scholar 

  166. Toledo LP, Ong TP, Pinho ALG, Jordão A, Vanucchi H, Moreno FS. Inhibitory effects of lutein and lycopene on placental glutathione S-transferase-positive preneoplastic lesions and DNA strand breakage induced in Wistar rats by the resistant hepatocyte model of hepatocarcinogenesis. Nutr Cancer. 2003;47:62–9. doi:10.1207/s15327914nc4701_8.

    Article  CAS  PubMed  Google Scholar 

  167. Umemura T, Kai S, Hasegawa R, Kanki K, Kitamura Y, Nishikawa A, Hirose M. Prevention of dual promoting effects of pentachlorophenol, an environmental pollutant, on diethylnitrosamine-induced hepato- and cholangiocarcinogenesis in mice by green tea infusion. Carcinogenesis. 2003;24:1105–9. doi:10.1093/carcin/bgg053.

    Article  CAS  PubMed  Google Scholar 

  168. Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology. 2006;43:335–44. doi:10.1002/hep.21036.

    Article  CAS  PubMed  Google Scholar 

  169. Cervello M, Giannitrapani L, La Rosa M, Notarbartolo M, Labbozzetta M, Poma P, Montalto G, D’Alessandro N. Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: possible correlation with specific caspase-dependent cleavage of beta-catenin and inhibition of beta-catenin-mediated transactivation. Int J Mol Med. 2004;13:741–8.

    CAS  PubMed  Google Scholar 

  170. Hegewisch-Becker S, Sterneck M, Schubert U, Rogiers X, Guerciolini R, Pierce JE, Hossfeld DK. Phase I/II trial of bortezomib in patients with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2004;22:335S.

    Article  Google Scholar 

  171. Joshi-Barve S, Barve SS, Butt W, Klein J, McClain CJ. Inhibition of proteasome function leads to NF-kappaB-independent IL-8 expression in human hepatocytes. Hepatol. Baltim. Md. 2003;38:1178–87. doi:10.1053/jhep.2003.50470.

    Article  CAS  Google Scholar 

  172. Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O’Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130:918–31. doi:10.1016/j.cell.2007.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liang M-C, Bardhan S, Li C, Pace EA, Porco JA, Gilmore TD. Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase. Mol Pharmacol. 2003;64:123–31. doi:10.1124/mol.64.1.123.

    Article  CAS  PubMed  Google Scholar 

  174. Kim K-H, Park K-K. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are? World J Gastroenterol. 2014;20:14696–705. doi:10.3748/wjg.v20.i40.14696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira Bettermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bettermann, K. (2017). NF-κB and Its Implication in Liver Health and Cancer Development. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-53659-0_6

Download citation

Publish with us

Policies and ethics