Skip to main content

MACC1, a Novel Player in Solid Cancer Carcinogenesis

  • Chapter
  • First Online:

Abstract

Cancer develops due to uncontrolled proliferation of cells initiated by genetic instability, mutations, and environmental stress. Cells acquire these fundamental abnormalities in a multistep process due to changes in complex multilayer molecular network signaling axes equipping them with increased capacity of proliferation, survival, extracellular matrix (ECM) degradation, migration, invasion, and metastasis. Recently, metastasis-associated in colon cancer 1 (MACC1) was identified with differential display RT-PCR by analyzing the normal mucosa, primary, and metastasis specimens of colon cancer. We discovered that MACC1 is an important transcriptional regulator of hepatocyte growth factor (HGF) receptor c-Met and showed that MACC1 plays an important role in tumorigenesis, migration, invasion, and distant metastasis. In this book chapter, we discuss in-depth the structure and function of MACC1 in different aspects of carcinogenesis like gene regulation, signaling, cell proliferation, apoptosis, migration, invasion, metastasis, angiogenesis, epithelial mesenchymal transition (EMT), its role in cell metabolism, and also the impact of MACC1 as predictive and prognostic marker. In addition, we describe MACC1 as druggable target molecule by different approaches to reduce tumorigenesis and metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stein U, Walther W, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009;15(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  2. Juneja M, et al. Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Mol Oncol. 2013;7(5):929–43.

    Article  CAS  PubMed  Google Scholar 

  3. Kuo IY, et al. Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. Int J Cancer. 2014;135(3):563–73.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang R, Ren F, Shi H. Expression of metastasis-associated in colon cancer-1 in different stages of epithelial ovarian cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2014;36(1):47–51.

    PubMed  Google Scholar 

  5. Zhuang H, et al. Aberrant expression of pim-3 promotes proliferation and migration of ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3325–31.

    Article  PubMed  Google Scholar 

  6. Li Y-Y, Mukaida N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J Gastroenterol. 2014;20(28):9392–404.

    PubMed  PubMed Central  Google Scholar 

  7. Meng F, et al. MACC1 down-regulation inhibits proliferation and tumourigenicity of nasopharyngeal carcinoma cells through Akt/β-catenin signaling pathway. PLoS One. 2013;8(4):e60821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris MA, et al. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol. 2009;5(6):811–25.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, Ma F, Jiang B. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11:23. doi:10.1186/1476-4598-11-23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen X, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.

    Article  CAS  PubMed  Google Scholar 

  11. Akao Y, et al. Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res. 2009;33(11):1530–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ng EKO, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101(4):699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordes KR, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget. 2014;5(14):5416–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, et al. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.

    CAS  PubMed  Google Scholar 

  16. Cui Z, et al. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell Int. 2014;14(1):47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kalabus JL, Cheng Q, Blanco JG. MicroRNAs differentially regulate carbonyl reductase 1 (CBR1) gene expression dependent on the allele status of the common polymorphic variant rs9024. PloS One. 2012;7(11):e48622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji S, et al. miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2013;62(5):716–26.

    Article  CAS  PubMed  Google Scholar 

  19. Feng J, et al. miR-200a suppresses cell growth and migration by targeting MACC1 and predicts prognosis in hepatocellular carcinoma. Oncol Rep. 2014;33(2):713–20.

    PubMed  Google Scholar 

  20. Huang N, et al. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget. 2015;6(17):15222–34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ilm K, et al. MACC1 is post-transcriptionally regulated by miR-218 in colorectal cancer. Oncotarget. 2016;7(33):53443–58.

    PubMed  PubMed Central  Google Scholar 

  22. Ceppi P, et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 2010;8(9):1207–16.

    Article  CAS  PubMed  Google Scholar 

  23. Park S-M, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dinkel H, et al. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res. 2014;42(D1):D259–66.

    Article  CAS  PubMed  Google Scholar 

  25. Buchan DWA, et al. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41(Web Server issue):W349–57.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yachdav G, et al. PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014;42(Web Server issue):W337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kokoszyńska K, et al. Unexpected domain composition of MACC1 links MET signaling and apoptosis. Acta Biochim Pol. 2009;56(2):317–24.

    PubMed  Google Scholar 

  28. Stein U, Dahlmann M, Walther W. MACC1—more than metastasis? Facts and predictions about a novel gene. J Mol Med. 2010;88(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  29. Dell’Angelica EC, et al. Association of the AP-3 adaptor complex with clathrin. Science (New York, NY). 1998;280(5362):431–4.

    Article  Google Scholar 

  30. Braun A, et al. EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol Biol Cell. 2005;16(8):3642–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kieken F, et al. Structural insight into the interaction of proteins containing NPF, DPF, and GPF motifs with the C-terminal EH-domain of EHD1. Protein Sci. 2009;18(12):2471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol. 2014;6(5):a016725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grant BD, Caplan S. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic. 2008;9(12):2043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miliaras NB, Wendland B. EH proteins: multivalent regulators of endocytosis (and other pathways). Cell Biochem Biophys. 2004;41(2):295–318.

    Article  PubMed  Google Scholar 

  35. Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 2011;21(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  36. Liao Y, et al. An ancient autoproteolytic domain found in GAIN, ZU5 and nucleoporin98. J Mol Biol. 2014;426(24):3935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D’Osualdo A, et al. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One. 2011;6(11):e27396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bock FJ, et al. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene. 2012;31(45):4733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heinz LX, et al. The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death Differ. 2012;19(4):722–31.

    Article  CAS  PubMed  Google Scholar 

  40. Huo L, et al. Cdc42-dependent formation of the ZO-1/MRCKβ complex at the leading edge controls cell migration. EMBO J. 2011;30(4):665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, et al. Structure of the ZU5-ZU5-UPA-DD tandem of ankyrin-B reveals interaction surfaces necessary for ankyrin function. Proc Natl Acad Sci. 2012;109(13):4822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yasunaga M, Ipsaro JJ, Mondragón A. Structurally similar but functionally diverse ZU5 domains in human erythrocyte ankyrin. J Mol Biol. 2012;417(4):336–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang R, et al. Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol Cell. 2009;33(6):692–703.

    Article  CAS  PubMed  Google Scholar 

  44. Kaneko T, Li L, Li SS-C. The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci. 2008;13:4938–52.

    Article  CAS  PubMed  Google Scholar 

  45. Ebsen H, et al. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a Disintegrin and Metalloprotease 10 (ADAM10). PLoS One. 2014;9(7):e102899.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Voss M, Lettau M, Janssen O. Identification of SH3 domain interaction partners of human FasL (CD178) by phage display screening. BMC Immunol. 2009;10:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pichorner A, et al. In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis. 2012;29(6):573–83.

    Article  CAS  PubMed  Google Scholar 

  48. Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.

    Article  CAS  PubMed  Google Scholar 

  49. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev. Mol Cell Biol. 2010;11(12):834–48.

    Article  CAS  PubMed  Google Scholar 

  50. Epstein JA, et al. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci U S A. 1996;93(9):4213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gambarotta G, et al. Ets up-regulates MET transcription. Oncogene. 1996;13(9):1911–7.

    CAS  PubMed  Google Scholar 

  52. Morozov VM, et al. Regulation of c-met expression by transcription repressor Daxx. Oncogene. 2008;27(15):2177–86.

    Article  CAS  PubMed  Google Scholar 

  53. Pennacchietti S, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.

    Article  PubMed  Google Scholar 

  54. Seol DW, et al. Regulation of the c-met proto-oncogene promoter by p53. J Biol Chem. 1999;274(6):3565–72.

    Article  CAS  PubMed  Google Scholar 

  55. Stein U, Smith J, et al. MACC1 controls met: what a difference an Sp1 site makes. Cell Cycle. 2009;8(15):2467–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang X, et al. Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Ren Physiol. 2005;288(1):F16–26.

    Article  CAS  Google Scholar 

  57. Kawamura M, et al. Correlation of MACC1 and MET expression in rectal cancer after neoadjuvant chemoradiotherapy. Anticancer Res. 2012;32(4):1527–31.

    CAS  PubMed  Google Scholar 

  58. Qiu J, et al. Identification of MACC1 as a novel prognostic marker in hepatocellular carcinoma. J Transl Med. 2011;9(1):166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stein U. MACC1—a novel target for solid cancers. Expert Opin Ther Targets. 2013;17(9):1039–52.

    Article  CAS  PubMed  Google Scholar 

  60. Arlt F, Stein U. Colon cancer metastasis: MACC1 and Met as metastatic pacemakers. Int J Biochem Cell Biol. 2009;41(12):2356–9.

    Article  CAS  PubMed  Google Scholar 

  61. Galimi F, et al. Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to Met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res. 2011;17(10):3146–56.

    Article  CAS  PubMed  Google Scholar 

  62. Li H, et al. Overexpression of MACC1 and the association with hepatocyte growth factor/c-Met in epithelial ovarian cancer. Oncol Lett. 2015;9(5):1989–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sheng XJ, et al. MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET. Oncol Lett. 2014;8(2):891–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shao Y, et al. Effect of A disintegrin and metalloproteinase 10 gene silencing on the proliferation, invasion and migration of the human tongue squamous cell carcinoma cell line TCA8113. Mol Med Rep. 2015;11(1):212–8.

    CAS  PubMed  Google Scholar 

  65. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  66. Zhen T, et al. MACC1 promotes carcinogenesis of colorectal cancer via β-catenin signaling pathway. Oncotarget. 2014;5(11):3756–69.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang L, et al. Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST1/2. Oncotarget. 2015;6(13):11492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang L, et al. Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion. Int J Cancer. 2013;133(6):1419–30.

    Article  CAS  PubMed  Google Scholar 

  69. Yao Y, et al. MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell Physiol Biochem. 2015;710061:983–96.

    Article  CAS  Google Scholar 

  70. Zhang K, et al. MACC1 is involved in the regulation of proliferation, colony formation, invasion ability, cell cycle distribution, apoptosis and tumorigenicity by altering Akt signaling pathway in human osteosarcoma. Tumour Biol. 2014;35(3):2537–48.

    Article  CAS  PubMed  Google Scholar 

  71. Lin L, et al. MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene. 2014;34(21):2700–10.

    Article  PubMed  CAS  Google Scholar 

  72. Li H-F, et al. Downregulation of MACC1 inhibits invasion, migration and proliferation, attenuates cisplatin resistance and induces apoptosis in tongue squamous cell carcinoma. Oncol Rep. 2015;33(2):651–60.

    CAS  PubMed  Google Scholar 

  73. Hagemann C, et al. Impact of MACC1 on human malignant glioma progression and patients’ unfavorable prognosis. Neuro Oncol. 2013;15(12):1696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sun L, et al. Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells. Mol Med Rep. 2015;12(3):3423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hua F, et al. Effects of small interfering RNA silencing MACC-1 expression on cell proliferation, cell cycle and invasion ability of cervical cancer SiHa cells. Zhonghua zhong liu za zhi [Chin J Oncol]. 2014;36(7):496–500.

    CAS  Google Scholar 

  76. Kalluri R. EMT: When epithelial cells decide to become mesenchymal-like cells. J Clin Investig. 2009;119(6):1417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 2009;69(18):7135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heimann R, et al. Separating favorable from unfavorable prognostic markers in breast cancer: the role of E-cadherin. Cancer Res. 2000;60(2):298–304.

    CAS  PubMed  Google Scholar 

  80. Wheelock MJ, et al. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.

    Article  CAS  PubMed  Google Scholar 

  81. Bolós V, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.

    Article  PubMed  CAS  Google Scholar 

  82. Conacci-Sorrell M, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of β-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163(4):847–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9.

    Article  CAS  PubMed  Google Scholar 

  84. Karreth F, Tuveson DA. Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther. 2004;3(11):1058–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lee TK, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12(18):5369–76.

    Article  CAS  PubMed  Google Scholar 

  86. Cano A, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  87. Wang G, et al. MACC1: a potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol Lett. 2012;4(4):783–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.

    Article  CAS  PubMed  Google Scholar 

  89. Chai H, Yang Y. Effects of MACC1 siRNA on biological behaviors of HeLa. Arch Gynecol Obstet. 2014;289(6):1271–80.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, et al. Downregulated expression of metastasis associated in colon cancer 1 (MACC1) reduces gallbladder cancer cell proliferation and invasion. Tumour Biol. 2014;35(4):3771–8.

    Article  CAS  PubMed  Google Scholar 

  91. Schmid F, Wang Q, Huska MR, Andrade-Navarro MA, Lemm M, Fichtner I, Dahlmann M, Kobelt D, Walther W, Smith J, Schlag PM, Stein U. SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival. Oncogene. 2016;35(46):5942–52.

    Article  CAS  PubMed  Google Scholar 

  92. Lemos C, Hardt M, Juneja M, Voss C, Förster S, Jerchow B, Haider W, Bläker H, Stein U. MACC1 induces tumor progression in transgenic mice and colorectal cancer patients via increased pluripotency markers Nanog and Oct4. Clin Cancer Res. 2016;22:2812–23.

    Article  CAS  PubMed  Google Scholar 

  93. Fabris L, et al. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology. 2008;47(2):719–28.

    Article  PubMed  Google Scholar 

  94. Singh S, et al. The role of TWIST in angiogenesis and cell migration in giant cell tumor of bone. Adv Biol. 2014;2014:1–8.

    Google Scholar 

  95. Yang J, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.

    Article  CAS  PubMed  Google Scholar 

  96. Sun L, et al. Metastasis-associated in colon cancer-1 upregulates vascular endothelial growth factor-C/D to promote lymphangiogenesis in human gastric cancer. Cancer Lett. 2015;357(1):242–53.

    Article  CAS  PubMed  Google Scholar 

  97. Ji D, et al. MACC1 expression correlates with PFKFB2 and survival in hepatocellular carcinoma. Asian Pac J Cancer Prev. 2014;15(2):999–1003.

    Article  PubMed  Google Scholar 

  98. Li Y, et al. Metastasis-associated in colon cancer-1 is associated with poor prognosis in hepatocellular carcinoma, partly by promoting proliferation through enhanced glucose metabolism. Mol Med Rep. 2015;12(1):426–34.

    CAS  PubMed  Google Scholar 

  99. Duan J, et al. Participation of metastasis-associated in colon cancer-1 gene on lipogenesis and chemoresistance of gastric cancer. J Clin Oncol. 2014;32(15 suppl):e15026.

    Google Scholar 

  100. Ren B, et al. MACC1 is related to colorectal cancer initiation and early-stage invasive growth. Am J Clin Pathol. 2013;140(5):701–7.

    Article  PubMed  Google Scholar 

  101. Ashktorab H, Hermann P, Nouraie M, Shokrani B, Lee E, Haidary T, Brim H, Stein U. Increased MACC1 levels in tissues and blood identify colon adenoma patients at high risk. J Transl Med. 2016;14:215.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xie C, et al. MACC1 as a prognostic biomarker for early-stage and AFP-normal hepatocellular carcinoma. PloS One. 2013;8(5):e64235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harpaz N, et al. Expression of MACC1 and MET in inflammatory bowel disease-associated colonic neoplasia. Inflamm Bowel Dis. 2014;20(4):703–11.

    Article  PubMed  Google Scholar 

  104. Boardman LA. Overexpression of MACC1 leads to downstream activation of HGF/MET and potentiates metastasis and recurrence of colorectal cancer. Genome Med. 2009;1(4):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ge Y, et al. Positive MACC1 expression correlates with invasive behaviors and postoperative liver metastasis in colon cancer. Int J Clin Exp Med. 2015;8(1):1094–100.

    PubMed  PubMed Central  Google Scholar 

  106. Isella C, et al. MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann Surg. 2013;257(6):1089–95.

    Article  PubMed  Google Scholar 

  107. Shirahata A, Shinmura K, et al. MACC1 as a marker for advanced colorectal carcinoma. Anticancer Res. 2010;30(7):2689–92.

    CAS  PubMed  Google Scholar 

  108. Sueta A, et al. Differential role of MACC1 expression and its regulation of the HGF/c-Met pathway between breast and colorectal cancer. Int J Oncol. 2015;46(5):2143–53.

    CAS  PubMed  Google Scholar 

  109. Yamamoto H, et al. MACC1 expression levels as a novel prognostic marker for colorectal cancer. Oncol Lett. 2014;8(5):2305–9.

    PubMed  PubMed Central  Google Scholar 

  110. Zlobec I. Novel biomarkers for the prediction of metastasis in colorectal cancer. Exp Opin Med Diagn. 2013;7(2):137–46.

    Article  CAS  Google Scholar 

  111. Nitsche U, et al. Integrative marker analysis allows risk assessment for metastasis in stage II colon cancer. Ann Surg. 2012;256(5):763–71.

    Article  PubMed  Google Scholar 

  112. Ilm K, et al. High MACC1 expression in combination with mutated KRAS G13 indicates poor survival of colorectal cancer patients. Mol Cancer. 2015;14(1):1–7.

    Article  CAS  Google Scholar 

  113. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138(6):2088–100.

    Article  CAS  PubMed  Google Scholar 

  114. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Worthley D-L, et al. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13(28):3784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  117. Vogelstein B, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32.

    Article  CAS  PubMed  Google Scholar 

  118. Koelzer VH, et al. Heterogeneity analysis of Metastasis Associated in Colon Cancer 1 (MACC1) for survival prognosis of colorectal cancer patients: a retrospective cohort study. BMC Cancer. 2015;15(1):1–11.

    Article  CAS  Google Scholar 

  119. Zhang K, et al. High expression of MACC1 predicts poor prognosis in patients with osteosarcoma. Tumour Biol. 2013;35(2):1343–50.

    Article  PubMed  CAS  Google Scholar 

  120. Guo L, et al. Metastasis-associated colon cancer-1 is a novel prognostic marker for cervical cancer. Int J Clin Exp Pathol. 2014;7(7):4150–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen L, et al. Prognostic significance of metastasis associated in colon cancer 1 (MACC1) expression in patients with gallbladder cancer. J Cancer Res Ther. 2015;10(4):1052–6.

    Google Scholar 

  122. Lederer A, et al. Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in klatskin tumor patients. Hepatology (Baltimore, Md.). 2015;62(3):841–50.

    Article  CAS  Google Scholar 

  123. Wang G, Fu Z, Li D. MACC1 overexpression and survival in solid tumors: a meta-analysis. Tumour Biol. 2014;36(2):1055–65.

    Article  PubMed  CAS  Google Scholar 

  124. Wu Z, et al. Prognostic value of MACC1 in digestive system neoplasms: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:252043.

    PubMed  PubMed Central  Google Scholar 

  125. Sun D-W, et al. Prognostic and clinicopathological significance of MACC1 expression in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med. 2015;8(4):4769–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lang AH, et al. A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients. BMC Cancer. 2012;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmid F, et al. SNPs in the coding region of the metastasis-inducing gene MACC1 and clinical outcome in colorectal cancer. Mol Cancer. 2012;11(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng Z, et al. Single nucleotide polymorphisms in the metastasisassociated in colon cancer-1 gene predict the recurrence of hepatocellular carcinoma after transplantation. Int J Med Sci. 2014;11(2):142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Muendlein A, et al. Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients. Eur J Cancer. 2014;50(12):2134–41.

    Article  CAS  PubMed  Google Scholar 

  130. Stein U, et al. Circulating MACC1 transcripts in colorectal cancer patient plasma predict metastasis and prognosis. PloS One. 2012;7(11):e49249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Z, et al. Circulating MACC1 as a novel diagnostic and prognostic biomarker for nonsmall cell lung cancer. J Cancer Res Clin Oncol. 2015;141(8):1353–61.

    Article  CAS  PubMed  Google Scholar 

  132. Burock S, et al. Circulating Metastasis Associated in Colon Cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World J Gastroenterol. 2015;21(1):333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shirahata A, Sakata M, et al. MACC 1 as a marker for peritoneal-disseminated gastric carcinoma. Anticancer Res. 2010;30(9):3441–4.

    PubMed  Google Scholar 

  134. Wang Z, et al. MACC1 overexpression predicts a poor prognosis for non-small cell lung cancer. Med Oncol (Northwood, London, England). 2014;31(1):790.

    Article  CAS  Google Scholar 

  135. Yang Y-P, et al. High intratumoral metastasis-associated in colon cancer-1 expression predicts poor outcomes of cryoablation therapy for advanced hepatocellular carcinoma. J Transl Med. 2013;11(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Shang C, et al. Influence of the MACC1 gene on sensitivity to chemotherapy in human U251 glioblastoma cells. Asian Pac J Cancer Prev. 2015;16:195–9.

    Article  PubMed  Google Scholar 

  137. Li HH, et al. The expression of MACC1 and its role in the proliferation and apoptosis of salivary adenoid cystic carcinoma. J Oral Pathol Med. 2015;44(10):810–7.

    Article  CAS  PubMed  Google Scholar 

  138. Zhang Y, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Cancer Consortium (DKTK) (to G.M. and U.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mudduluru, G., Ilm, K., Dahlmann, M., Stein, U. (2017). MACC1, a Novel Player in Solid Cancer Carcinogenesis. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-53659-0_2

Download citation

Publish with us

Policies and ethics