Advertisement

TB-Structure: Collective Intelligence for Exploratory Keyword Search

  • Vagan Terziyan
  • Mariia GoloviankoEmail author
  • Michael Cochez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10151)

Abstract

In this paper we address an exploratory search challenge by presenting a new (structure-driven) collaborative filtering technique. The aim is to increase search effectiveness by predicting implicit seeker’s intents at an early stage of the search process. This is achieved by uncovering behavioral patterns within large datasets of preserved collective search experience. We apply a specific tree-based data structure called a TB (There-and-Back) structure for compact storage of search history in the form of merged query trails – sequences of queries approaching iteratively a seeker’s goal. The organization of TB-structures allows inferring new implicit trails for the prediction of a seeker’s intents. We used experiments to demonstrate both: the storage compactness and inference potential of the proposed structure.

Keywords

Keyword search Query trail TB-structure Collective intelligence 

Notes

Acknowledgements

This article is based upon work from COST Action KEYSTONE IC1302, supported by COST (European Cooperation in Science and Technology).

References

  1. 1.
    Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, Canada (2013)Google Scholar
  2. 2.
    McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D.: Big data. Manag. Revolution Harvard Bus Rev. 90(10), 61–67 (2012)Google Scholar
  3. 3.
    Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)Google Scholar
  4. 4.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  5. 5.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., New York (2015)Google Scholar
  6. 6.
    Cambazoglu, B.B., Baeza-Yates, R.: Scalability challenges in web search engines. Synth. Lect. Inf. Concept Retrieval Serv. 7(6), 1–138 (2015)Google Scholar
  7. 7.
    Lewandowski, D.: Evaluating the retrieval effectiveness of web search engines using a representative query sample. J. Assoc. Inf. Sci. Technol. 66(9), 1763–1775 (2015)CrossRefGoogle Scholar
  8. 8.
    Bao, Z., Zeng, Y., Jagadish, H.V., Ling, T.W.: Exploratory keyword search with interactive input. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 871–876. ACM, May 2015Google Scholar
  9. 9.
    Belkin, N.J., Cool, C., Stein, A., Thiel, U.: Cases, scripts, and information-seeking strategies: on the design of interactive information retrieval systems. Expert Syst. Appl. 9(3), 379–395 (1995)CrossRefGoogle Scholar
  10. 10.
    Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)CrossRefGoogle Scholar
  11. 11.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  12. 12.
    Efthimiadis, E.N.: Interactive query expansion: a user-based evaluation in a relevance feedback environment. J. Am. Soc. Inf. Sci. 51(11), 989–1003 (2000)CrossRefGoogle Scholar
  13. 13.
    Fattahi, R., Parirokh, M., Dayyani, M.H., Khosravi, A., Zareivenovel, M.: Effectiveness of Google keyword suggestion on users’ relevance judgment: a mixed method approach to query expansion. Electron. Libr. 34(2), 302–314 (2016)CrossRefGoogle Scholar
  14. 14.
    Bobed, C., Trillo, R., Mena, E., Ilarri, S.: From keywords to queries: discovering the user’s intended meaning. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 190–203. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17616-6_18 CrossRefGoogle Scholar
  15. 15.
    Jansen, B.J., Spink, A.: How are we searching the World Wide Web? A comparison of nine search engine transaction logs. Inf. Process. Manag. 42(1), 248–263 (2006)CrossRefGoogle Scholar
  16. 16.
    Lovitskii, V.A., Terziyan, V.: Words’ Coding in TB-Structure. Problemy Bioniki 26, 60–68 (1981). (In Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vagan Terziyan
    • 1
  • Mariia Golovianko
    • 2
    Email author
  • Michael Cochez
    • 1
    • 3
    • 4
  1. 1.Faculty of Information TechnologyUniversity of JyvaskylaJyvaskylaFinland
  2. 2.Department of Artificial IntelligenceKharkiv National University of RadioelectronicsKharkivUkraine
  3. 3.Fraunhofer Institute for Applied Information Technology FITSankt AugustinGermany
  4. 4.Informatik 5RWTH Aachen UniversityAachenGermany

Personalised recommendations