Skip to main content

Different Types of Mould Powders

  • Chapter
  • First Online:
  • 1106 Accesses

Abstract

The mould powder must carry out a series of tasks. Arguably, the most important of these tasks is the formation of a slag film which provides the optimum level of lubrication and heat extraction from the shell. These properties are determined by the (i) mould dimensions (ii) the casting conditions and (iii) the steel grade being cast. Empirical rules have been developed to express the properties providing good casting performance; these include the required values for the powder consumption, slag viscosity and the break temperature but the fraction of crystal phase in the slag film (fcrys) should also be cited. The various types of mould powders are described, e.g. starter, exothermic and prefused powders. Most mould powders in use are denoted as Conventional; the properties of these powders would be expected to be (i) consistent with those derived from empirical rules and (ii) to contain fluorides to form cuspidine in the slag film. However, there are a number of specialist powders which have been developed to carry out specific tasks or to cover special steel grades or casting conditions. The specialist mould powders include the following: F-free powders; C-free powders, Non-Newtonian powders, and fluxes used to cast high–speed, thin slabs and round billets and powders used to cast steels with high Al and rare earth contents and stainless steels. Although the properties of all these fluxes are consistent with those predicted by the empirical rules, developments have been made to deal with special features for each type of powder.

This is a preview of subscription content, log in via an institution.

Abbreviations

D :

Diameter (m)

d :

Thickness (m)

k :

Thermal conductivity (Wm−1K−1)

Q MR :

Melting rate (kg s−1 or kg min−1)

Q s :

Powder consumption (kg m2(mould))

q :

Heat flux density (Wm−2)

t :

Thickness of mould (m)

w :

Width of mould (m)

γ :

Surface tension (mNm−1)

η :

Viscosity (dPas)

T :

Temperature (°C)

T br :

Break temperature (°C)

T liq :

Liquidus temperature (°C)

T sol :

Solidification temperature (°C)

V c :

Casting speed (m min−1)

C/S :

%CaO/%SiO2 = basicity

EMBR:

Electromagnetic Braking

HC:

High carbon (steel)

IR:

Infrared

LC:

Low carbon (steel)

MC:

Medium carbon (steel)

SEN:

Submerged entry nozzle

ULC:

Ultra-low carbon (steel)

A:

Al2O3

B:

B2O3

C:

CaO

F:

FeO

Fl:

CaF2

K:

K2O

L:

Li2O

M:

MgO

Mn:

MnO

N:

Na2O

S:

SiO2

T:

TiO2

References

  1. KC Mills, A review of ECSC –funded research. EUR 13177, (1990) (Europ. Comm, Sci. Tech. Publ., Luxembourg, 1991).

    Google Scholar 

  2. R Shah, JG Williams, G Hecko, Proc. ISS Tech., 2003, Conf., (ISS, Warrendale, PA, 2003) p. 555.

    Google Scholar 

  3. T Sakuraya, T Emi. T Imai, K Emoto, M Kodama, Tetsu-to- Hagane, 67, 1220, (1981).

    Google Scholar 

  4. P Andersson. Ironmaking and Steelmaking, 42, 465, (2015).

    Google Scholar 

  5. P Andersson, Thermal conductivity of powders used in continuous casting of slabs and billets. Ironmaking Steelmaking in press

    Google Scholar 

  6. S Diehl, JA Moore, RJ Phillips, Proc. 78th Steelmaking Conf., Nashville, TN, 1995, (ISS, Warrendale, PA, 1995) p. 351.

    Google Scholar 

  7. R Saraswat, PhD Thesis, “Modelling the effect of mould flux on steel shell formation during continuous casting”,” Imperial College, London, (2006).

    Google Scholar 

  8. KC Mills, NPL Report DMA (D) 405, Fundamental Study of the behaviour of casting powders, Final Report EUR 9560, ECSC contract 7210 CA/131/ 311/ 810 (Europ. Sci. Tech. Publ., Luxembourg, 1985).

    Google Scholar 

  9. PE Ramirez-Lopez, KC Mills, PD Lee, B Santillana, Met. Mater. Trans. B, 43B, (1), 109, (2012).

    Google Scholar 

  10. M. Wolf, Proc. METEC Congress’94, 2nd Europ. Conf. Continuous Casting, Dusseldorf, 1994, (VDEh, Dusseldorf, 1994) vol. 1, p. 78.

    Google Scholar 

  11. S Ogibayashi, K Yamaguchi, T Mukai, T Takahashi, Y Mimura, K Koyama. Y Nagano, T Nagano, Nippon Steel Technical Report, 34, 1, (1987).

    Google Scholar 

  12. AB Fox, PhD Thesis, Mould fluxes their properties and performance. Dept. of Materials, Imperial College, London, (2003).

    Google Scholar 

  13. T Mukongo, C Pistorius, A Garbers-Craig, Ironmaking Steelmaking, 31, 135, (2004).

    Google Scholar 

  14. RC Nunnington, N Sutcliffe, Proc. 59th Electric Furnace Conf., Pheonix, AZ, (2001), p. 361.

    Google Scholar 

  15. Q Wang, YJ Lu, SP He, KC Mills, Z Li, Ironmaking and Steelmaking, 38, 297, (2011).

    Google Scholar 

  16. S Hiraki, K Nakajima, T Murakami, T Kanazawa, Proc. 77th Steelmaking Conf., Chicago, 1994 (ISS, Warrendale, PA, 1994) p. 397.

    Google Scholar 

  17. KC Mills, AB Fox, ISIJ Intl., 43, 1479, (2003).

    Google Scholar 

  18. G Skoczylas, Proc. 79th Steelmaking Conf., 1996, (ISS, Warrendale, PA, 1996) p. 269.

    Google Scholar 

  19. F Neumann, J Neal, MA Pedroza, AH Castiliejos E, FA Acosta G, Proc. 79th Steelmaking Conf., 1996, (ISS, Warrendale, PA, 1996) p. 249.

    Google Scholar 

  20. M Hanao, Y Tsukaguchi, M Kawamoto, Proc. 4th Intl Cong. Sci. Technol, Gifu, Japan, 2008, p. 694.

    Google Scholar 

  21. H Nakato, S Takeuchi, T Fujii, T Nozaki, N Washio, Proc. 74th Steelmaking Conf., 1991, (ISS, Warrendale, PA, 1991), p. 639.

    Google Scholar 

  22. J Macho, G Hecko, B Golomowski, M Frazee, McMaster Iron & Steelmaking Symp. “Thinner slab casting”, McMaster University, Hamilton, Ont. (2005) p. 131.

    Google Scholar 

  23. H Takeuchi, H Mori, T Nishida, T Yanai, K Mukunashi, Trans. ISIJ, 19, 274, (1979).

    Google Scholar 

  24. C Lefebvre, JP Radot, JN Pontoire, Y Roux, Revue de Metallurgie, CIT, 94, 489, (1997).

    Google Scholar 

  25. Y Nakamura,T Ando, K Kurata, M Ikeda, Trans. ISIJ, 26, 1052, (1986).

    Google Scholar 

  26. N Tsukamoto, Taikabutsu (Refractories), 44 (5), 270, (1992).

    Google Scholar 

  27. MC Bezerra, CA Valadares, IP Rocha, JP Bulota, MC Carboni, IL Scripnic, CR Santos, K Mills, D Lever, Proc. 37th Steelmaking Seminar, Porto Allegre, RS- Brazil, 2005, (ABM, Sao Paulo, 2005) p. 190. http//www.carboox.com/pdf/fluxante_2007.pdf.

  28. MM Wolf, Ironmaker & Steelmaker, 2000, (Feb), 65, (2000).

    Google Scholar 

  29. MM Wolf, Ironmaker & Steelmaker, 2000, (Mar), 69, (2000).

    Google Scholar 

  30. MM Wolf, Ironmaker & Steelmaker, 2000, (Apr), 58, (2000).

    Google Scholar 

  31. MM Wolf, Ironmaker & Steelmaker, 2000, (May), 78, (2000).

    Google Scholar 

  32. MM Wolf, Ironmaker & Steelmaker, 2000, (June), 22, (2000).

    Google Scholar 

  33. MM Wolf, Ironmaker & Steelmaker, 2000, (July), 63, (2000).

    Google Scholar 

  34. MM Wolf, Ironmaker & Steelmaker, 2000, (Aug), 75, (2000).

    Google Scholar 

  35. MM Wolf, Ironmaker & Steelmaker, 2000, (Sept.), 90, (2000).

    Google Scholar 

  36. MM Wolf, Ironmaker & Steelmaker, 2000, (Oct), 114, (2000).

    Google Scholar 

  37. MM Wolf, Ironmaker & Steelmaker, 2000, (Nov), 67, (2000).

    Google Scholar 

  38. MM Wolf, Ironmaker & Steelmaker, 2000, (Dec), 45, (2000).

    Google Scholar 

  39. MM Wolf, Proc. 81st Steelmaking Conf., 1998, (ISS, Warrendale, PA, 1998) p. 53

    Google Scholar 

  40. M. Kawamoto: Paper presented at Intl. Workshop on “Thermophysical data for the development of mathematical models of solidification”, Gifu City, Japan, Oct. (1995).

    Google Scholar 

  41. R Carli, V Ghilardi, Iron and Steelmaker, 1998, (June), 43, (1998).

    Google Scholar 

  42. T Kishi, H Takeuchi, M Yamamiya, H Tsuboi, T Nakano, T Ando, Nippon Steel Tech. Report, 34, 11, (1987).

    Google Scholar 

  43. JY Park, SM Jung, I Sohn, Met. Mater. Trans., B, 45B, 329, (2014).

    Google Scholar 

  44. M Kawamoto, K Nakajima, T Kanazawa, K Nakai. ISIJ Intl., 34, 593, (1994).

    Google Scholar 

  45. K Schwerdtfeger, A Jablonka, Steel Research Intl., 64, 77, (1993).

    Article  CAS  Google Scholar 

  46. SY Kim, J Choi, Proc. 4th Intl. Conf. Continuous Casting, Birmingham, 2002, (IOM, London, 2002) p. 594.

    Google Scholar 

  47. JN Pontoire, JP Radot, V Delvaux, E Dehaussy, Revue de Metallurgie, CIT. 93, 1237, (1996).

    Google Scholar 

  48. Y Ueshima, T Mizoguchi, T Kajitani, Proc. 9th Intl. Conf. Molten slags, fluxes and salts (Molten 12), Beijing, 2012, (Chinese Metals Soc., 2012)

    Google Scholar 

  49. H Yamamura, T Kajitani, J Nakashima, M Yamasaki, S Mineta, Nippon Steel Technical Report, 104, 54, (2013).

    Google Scholar 

  50. Q Liu, GH Wen, JZ Li, XJ Fu, P Tang, W Li, Ironmaking and Steelmaking, 41, 292, (2014).

    Google Scholar 

  51. T Watanabe, H Fukuyama, M Susa, K Nagata, Met. Mater. Trans. B, 31B, 1273 (2000) see also ISIJ Intl., 42, 489, (2002).

    Google Scholar 

  52. M Hanao, M Kawamoto, M Hara, T Murakami, H Kikuchi, Tetsu-to Hagane, 88 (1), 23, (2002).

    Article  CAS  Google Scholar 

  53. H Nakada, K Nagata, ISIJ Intl., 46, 441, (2006).

    Google Scholar 

  54. M Hayashi, T Watanabe, H Nakada, K Nagata, ISIJ Intl., 46, 1805, (2006).

    Google Scholar 

  55. P Grieveson, S Bagha, N Machingawuta, K Liddell, KC Mills, Ironmaking and Steelmaking, 15, 181, (1988).

    Google Scholar 

  56. JH Park, JS Park, JY Park, Steel Times Intl., 1998, (Sept), CC14 (1998).

    Google Scholar 

  57. PP Sahoo, A Dey, Proc. 9th Intl. Conf. Molten slags, fluxes and salts, Beijing, 2012, (Chinese Metals Soc. 2012).

    Google Scholar 

  58. SH Chang, IJ Lee, MR Kim, SM Yang, J Choi, JS Park, Proc. Conf. on Continuous Casting in developing countries, Beijing, 1993, p. 832.

    Google Scholar 

  59. K Tsukaguchi, S Ura, A Shiraishi, Y Hitomi, T Nagahata, Steel Technol. Intl., 1995/6, 175, (1995/6).

    Google Scholar 

  60. LE From: “Optimisation of mould powder performance in casting long products- Tech Rept No. 6”. MEFOS Report: MEF99024 K: P3568: Konto 130410 (1999).

    Google Scholar 

  61. JW Cho, JK Park, KH Moon, SH Lee, KH Kim, HS Jeong, “ Characteristics of molten mold flux feeding technology. Proc. AISTech. 2007, Indianapolis, IN, 2007 (ISS Warrendale, PA, 2007).

    Google Scholar 

  62. JK Park, JW Cho, KH Moon, SH Lee, KH Kim, HS Jeong, “Study on the initial solidification behaviour under the new process of molten mold flux feeding technology in the continuous casting mould.” Proc. 7th Intl. Conf on Clean Steel, Balatonfured, Hungary, 2007, (Hung. Min. Metall. Soc., Budapest, 2007), p. 264.

    Google Scholar 

  63. AI Zaitsev, AV Leites, AD Litvina, B Mogutov, Steel Research, 65, 368, (1994).

    Article  CAS  Google Scholar 

  64. F Shimizu, F Tokunaga, N Saito, K Nakashima, ISIJ Intl., 46, 385, (2006).

    Google Scholar 

  65. K Shimizu, AW Cramb, Iron and Steel Maker, 2002, (6), 43, (2002).

    Google Scholar 

  66. H Heimbach, K Schulz, J Markardt, HJ Ehrenberg, Stahl u Eisen, 117, 105, (1997).

    Google Scholar 

  67. DE Sturgill, Proc. 79th Steelmaking Conf., Pittsburgh, 1996, (ISS, Warrendale, PA, 1996) p. 265.

    Google Scholar 

  68. RE Hargrave, DW Reichgott, Proc.78th Steelmaking Conf., 1995, (ISS, Warrendale, PA, 1996) p. 385.

    Google Scholar 

  69. H Abratis, F Hofer, M Junemann, H Sardmann, H Stoffel, Stahl u Eisen, 116, 85, (1996).

    Google Scholar 

  70. AB Fox, KC Mills, D Lever, C Bezerra, C Valadares, I Unamono, J Laraudogoitia, J Gisby, ISIJ Intl., 45, 1051, (2005).

    Google Scholar 

  71. C Zhang, DX Cai, Proc. 8th Europ, Conf. Continuous Casting, Graz, 2014, (Austrian Metals Soc. 2014).

    Google Scholar 

  72. GH Wen, S. Sridhar, P Tang, X Qi, YQ Liu, ISIJ Intl., 47, 1117, (2007).

    Google Scholar 

  73. LY Chen, GH Wen, CL Yang, F Mei, CY Shi, P Tang, Ironmaking and Steelmaking, 42, 105, (2015).

    Google Scholar 

  74. AB Fox, K Mills, D Lever, M C Bezerra, CA Valadares, I Unamono, J Laraudogoitia, J Gisby, Proc. 36th Steelmaking Seminar, Vittoria, ES, Brazil, (2005) p. 222 available on line at http:/www.carboox.com/pdf/paper2005sfs.pdf.

  75. Y Lu, GD Zhang, MF Jiang, Advanced Mater. Res., 233/235, 805, (2011).

    Google Scholar 

  76. Z Wang, Q Shu, KC Chou, Steel Research, 84, 768, (2013).

    Google Scholar 

  77. PS Kharlashin, Azovetal 1999 (4), 34, (1999).

    Google Scholar 

  78. Y Lu, GD Zhang, Mater. Sci. Forum, 675/677, 877, (2011).

    Google Scholar 

  79. P Tang, GH Wen, ZB Wang, SB Fan, ZB Zhang, SC Li, H Li, Proc. ISS Tech. 2003 Conf., (ISS, Warrendale, PA, 2003) p. 567.

    Google Scholar 

  80. SY Choi, DH Lee, DW Shin, JW Cho, JM Park, J Non-Cryst. Solids, 15, (8), 157, (2004).

    Google Scholar 

  81. Y Lu, X Fang, GD Zhang, Advanced. Mater. Res., 287/290, 1866, (2011).

    Google Scholar 

  82. QC Wei, YQ Ding, KD Peng, J Chongqing Univ., 4, 110, (1995).

    Google Scholar 

  83. Y Lu, GD Zhang, X Yu, Appl. Mech. and Mater., 71/78, 2899, (2011).

    Google Scholar 

  84. Y Lu, X Fang, XF Yu, Advanced Mater. Res., 455/456, 134, (2012).

    Google Scholar 

  85. JL Klug, DR Silva, SL Freitas, MMSM Pereira, NC Heck, ACF Viela, D Jung, Steel Res. Intl., 83, 791, (2012).

    Google Scholar 

  86. SP He, X Long, JF Xu, T Wu, Q Wang, Ironmaking and Steelmaking, 39, 593, (2012).

    Google Scholar 

  87. Q. Wang, SP He, KC Mills: Proc. 4th Intl. Conf. Cont. Casting Steel in Developing Countries, Beijing, China (2008). (Chinese Soc. Metals, Beijing, 2008), p. 715.

    Google Scholar 

  88. YK Jung, SK Jung, JW Cho, JH Park, “Commercial plant trial of Fluorine-free mold flux for continuous casting of blooms”. Proc. SEAISI Conf., SEAISI, Singapore, (2014)

    Google Scholar 

  89. H Nakada, K Nagata, ISIJ Intl., 46, 441, (2006).

    Google Scholar 

  90. JL Klug, R Hagermann, NC Heck, JFC Viela, PR Scheller. Proc. 9th Intl. Conf. Molten slags, fluxes and salts, Beijing, 2012 (Chinese Metals Soc., 2012)

    Google Scholar 

  91. J Klug, N Heck, A Faria, Proc. 8th Intl Conf. Molten slags, fluxes and salts, Santiago, Chile, 2009 (GECAMIN, Santiago, Chile, 2009), p. 1053.

    Google Scholar 

  92. H Hashimoto, T Watanabe, K Nagata, CAMP-ISIJ, 17, 849, (2004).

    Google Scholar 

  93. X Qi, GH Wen, P Tang, J Non Cryst. Solids, 354 (No 52/54), 5444, (2008).

    Google Scholar 

  94. N Takahira, M Hanao, Y Tsukaguchi, ISIJ Intl. 53, p. 818, (2013)

    Google Scholar 

  95. A Kusano, N Sato, M Okimori, S Fukunaga, K Nishihara, M Sato, Y Minigawa, Proc. 74th Steelmaking Conf., 1991, (ISS, Warrendale, PA, 1991) p. 111.

    Google Scholar 

  96. S Terada, S Kaneo, T Ishikawa, Y Yoshida, Proc. 74th Steelmaking Conf.,Washington, DC, 1991 (ISS, Warrendale, PA, 1991) p. 635.

    Google Scholar 

  97. B. Debiesme, J Radot, D Coulombet, C Lefebre, Y Roux, C Demarval, US Patent No 5 876, 482 (1999) and US Patent No 6, 328, 781, (2001).

    Google Scholar 

  98. T Kanazawa, T Marukawa, K Nakai, T Yamada, K Nakajima, Steel Times Supplement, 222 (6), 16, (1994).

    Google Scholar 

  99. M Kawamoto, T Kanazaka, S Hiraki, S Kumakura, Proc. 5th Intl. Conf. Molten slags, fluxes and salts, Sydney, 1997, (ISS, Warrendale, PA, (1997) p. 777).

    Google Scholar 

  100. M Kawamoto, K Nakajima, T Kanazawa, K Nakai, ISIJ Intl., 34, 593, (1994).

    Google Scholar 

  101. M Hanao, M Kawamoto, M Hara, T Murakami H Kikuchi, A Yamanaka,. Proc. 5th Europ. Conf. Cont, Casting, Nice,2005, (La Revue Metall., Paris, 2005) see also Tetsu-to Hagane, 88 (1), 23 (2002)

    Google Scholar 

  102. JA Kromhout, S Meltzer, RW Zinngrebe, AA Kamperman, R Boom, Proc. 9th Intl. Conf. Molten slags, fluxes and salts, Beijing, 2012, (Chinese Metals Soc.)

    Google Scholar 

  103. JA Kromhout, M Kawamoto, M Hanao, Y Tsukaguchi, E Dekker, R Boom, Steel Research Intl., 80, 575, (2009).

    Google Scholar 

  104. JA Kromhout, PhD Thesis, “Mould powders for the high speed continuous casting of steel”, Univ. Delft, (2011), p. 165.

    Google Scholar 

  105. T Matsumiya, ISIJ Intl., 46, 1800, (2006).

    Google Scholar 

  106. S Chakraborty, W Hill, Proc. 77th Steelmaking Conf., 1994, (ISS, Warrendale, PA, 1994) p. 389.

    Google Scholar 

  107. J Kromhout, RS Schimmel, Proc 8th Europ. Conf. Continuous Casting, Graz, 2014, (Austrian Metals Soc.)

    Google Scholar 

  108. Y Liu, XD Wang, M Yao, AB Zhang, H Ma, Z Wang, JC Ma, X Wang, GQ Shi, Ironmaking and Steelmaking, 41, 748, (2014).

    Google Scholar 

  109. M Kawamoto, CAMP-ISIJ, 6, 1176, (1993).

    Google Scholar 

  110. S Umeda, Y Tsukaguchi, H Mikai, Y Hitomi, M Kawamoto, CAMP- ISIJ, 7, 302, (1994).

    Google Scholar 

  111. R Nishimachi, Y Ogura, SEAISI Quarterly, 25, (Oct), 44, (1996).

    Google Scholar 

  112. K Tsutsumi, K Watanabe, J Kubota, S Hatori, Y Miki, T Suzuki, T Omoto, Proc. 7th Europ. Cont. Casting Conf., Dusseldorf, 2011, (VDEh, Dusseldorf, 2011) Session p. 1.

    Google Scholar 

  113. K Watanabe, K Tsutsumi, M Suzuki, H Fujita, S Hatori, T Omoto, ISIJ Intl., 54, 865, (2014).

    Google Scholar 

  114. K Blazek, H Yin, G Skoczylas, M McClymonds, MJ Frazee, AIST Tech. 2011 (AIST, Warrendale, PA, 2011) also Iron & Steel Technol., 8 (3), 232, (2011).

    Google Scholar 

  115. JW Cho, KE Blazek, MJ Frazee, HB Yin, JE Park, SW Moon, ISIJ Intl., 53, 62, (2013).

    Google Scholar 

  116. H Yin, G Skoczylas, Proc. ATS Tech. Conf., Indianapolis, 2006 (AIST-ISS Warrendale, PA, 2006) p. 753.

    Google Scholar 

  117. WL Wang, K Blazek, AW Cramb, Met. Mater. Trans. B, 39 B, 66, (2008).

    Google Scholar 

  118. X Yu, GH Wen, P Tang, H Wang, Ironmaking and Steelmaking, 36, 623, (2009).

    Google Scholar 

  119. IH Jung, MA van Ende, Proc. 8th Europ. Conf. Continuous Casting, Graz, 2014, (Austrian Metals Soc. 2014).

    Google Scholar 

  120. Q Wang, JH Chi, B Xie, Y He, B Zhu, W Chen, B Xie, JH Chi, Proc. Conf. Continuous Casting in Developing Countries, Beijing, 1993 (SEAISI, Singapore, 1993) p 842.

    Google Scholar 

  121. Y Tsukaguchi, CAMP- ISIJ, 21, 826, (2008).

    Google Scholar 

  122. K Blazek, HB Yin, G Skoczylas, M McClymonds, M Frazee, Iron and Steel Technology, 8, (3), 232, (2011).

    Google Scholar 

  123. TS Kim, JH Park, ISIJ Intl., 54, 2031, (2014).

    Google Scholar 

  124. Q Liu, GH Wen, JZ Li, XJ Fu, P Tang, W Li, Ironmaking and Steelmaking, 41, 292, (2014).

    Google Scholar 

  125. JL Li, QF Shu, KC Chou, Can. Metall. Quart., 54, 85, (2015).

    Google Scholar 

  126. QF Shu, Z Wang, J L Klug, K Chou, PR. Scheller, Steel Research, 84, 1138 (2013).

    Google Scholar 

  127. MD Seo, CB Shi, JW Cho, SY Kim,. Proc. 8th Europ. Conf. Continuous Casting, Graz, 2014, (Austrian Metals Soc., 2014).

    Google Scholar 

  128. JW Cho, SY Kim, SC Moon, H Shibata, Proc. 6th Intl Conf. Molten Slags, Fluxes and Salts, Stockholm, Helsinki, June 2000, Paper 154, Filename 341.pdf

    Google Scholar 

  129. P Misra, S Sridhar, AW Cramb, Met. Mater. Trans. B, 32B, 963, (2001).

    Google Scholar 

  130. Z Wang, QF Shu, XM Hou, KC Chou, Ironmaking and Steelmaking, 39, 210, (2012).

    Google Scholar 

  131. F Shimizu, F Tokunaga, N Saito, K Nakashima, ISIJ Intl., 46, 385, (2006).

    Google Scholar 

  132. DY Wang, M Jiang, CJ Liu, PY Shi, J North Eastern Univ. (Natural Sci.), 26, (11), 1082, (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Mills .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mills, K.C., Däcker, CÅ. (2017). Different Types of Mould Powders. In: The Casting Powders Book. Springer, Cham. https://doi.org/10.1007/978-3-319-53616-3_6

Download citation

Publish with us

Policies and ethics