Skip to main content

Slag Infiltration, Lubrication and Frictional Forces

  • Chapter
  • First Online:
The Casting Powders Book

Abstract

It is essential to lubricate the shell since inadequate lubrication leads to defects in the steel product (e.g. longitudinal cracks, sticker breakouts and star cracks). The liquid layer of the slag film, formed between the shell and the mould, lubricates the newly formed shell; the lubrication increases with increasing liquid slag thickness (dl). Lubrication is usually represented by the powder consumption (Qs in units of kg slag (or powder) m−2) which is related to liquid film thickness (dl). However, there are several terms used for powder consumption and these terms are interrelated (e.g. Qs, Qt and QMR). The frictional forces acting on the shell are highest in the centre of slabs and thus slabs need more lubrication. The required powder consumption, Qs increases with increasing distance from the corner and thus Q slabs  > Q blooms  > Q billets . The required powder consumption can be calculated from the relation, Q reqs  = 2/(R* – 5) where R* = {2(w + t)/w · t} =  (surface area/volume) of the mould. However, the powder consumption, Qs, is also affected by other parameters, namely, the casting speed (Vc), slag viscosity (η), the break temperature of the slag and the oscillation frequency (f) and stroke (s). There is general agreement that Qs decreases with increasing casting speed and viscosity (e.g. empirical rules, Q slagsreq  = 0.55/ η0.5 · Vc). There is some dispute with regard to the effect of f, s and Tbr but most plant studies indicate that Q slags req decreases as f, s and Tbr increase. The required values of powder consumption and viscosity can be calculated for the given casting conditions using empirical rules. The predictions of a mathematical model indicate that slag infiltration into the model/ strand channel occurs when the mould and slag rim are descending but little powder consumption occurs when the mould is ascending. The changes in mould direction are accompanied by periods of confused flow in the mouth of the channel and little slag infiltration occurs in these periods. Frictional forces and the factors affecting them are also discussed; it was found that liquid friction increased with increasing mould dimensions, slag viscosity, casting speed and (Vm − Vc). Plots of liquid friction (Fl) versus casting speed exhibit a minimum since Fl increases with increasing Vc but decreases with decreasing (Vm − Vc).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A :

Area (m2)

% C free :

Percentage of free carbon

% C total :

Percentage of total carbon

% LOI:

Percentage of loss on ignition

D C :

Mean particle size of the carbon

D corn :

Distance mould corner to centre (m)

D l :

Thickness of liquid slag film (m)

F l :

Frictional force (N)

f :

Frequency (Hz or cycles min−1)

f* :

Fraction of powder forming slag

Q cycle :

Powder consumption (kg m−1 cycle−1)

Q MR :

Melting rate (kg/min or kg/s)

Q s :

Powder consumption (kg/m2)

Q t :

Powder consumption (kg/tonne−1)

R* :

Mould (surface area/volume) (m−1)

s :

Stroke length (m)

T :

Temperature (oC)

T br :

Break (or solidification) temperature,

t :

Time (s) or thickness of mould (m)

t cycle :

Time for one cycle (s or min)

t n :

Negative strip time (s)

t p :

Positive strip time (s)

V c :

Casting speed (m/min)

V m :

Velocity of mould (m/min or m/s)

w :

Width of mould

η :

Slag viscosity (dPas)

ρ :

Density (kg/m3)

powd :

Refers to powder

slag :

Slag formed from powder

References

  1. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, B. Santilanna, Met. Mater. Trans. 43, 109, (2011).

    Google Scholar 

  2. A.B. Fox, PhD Thesis, Mould fluxes their properties and performance. Dept. of Materials, Imperial College, London, (2003).

    Google Scholar 

  3. Y Nuri, T Ohashi, N Miyasaka, K Shima, Y Uchida, Trans. ISIJ, 20, B170, (1980).

    Google Scholar 

  4. R. Saraswat, A.B. Fox, K.C. Mills, P.D. Lee, B. Deo, Scand. J. Met., 33, 85, (2004).

    Google Scholar 

  5. T. Kajitani, K. Okazawa, W. Yamada, H. Nakamura, ISIJ Intl. 46, 250, (2006).

    Google Scholar 

  6. M.S. Jenkins, PhD Thesis “Heat transfer in the continuous casting mould”, Monash Univ., Clayton, Vic., Australia, (1999).

    Google Scholar 

  7. Y. Itoh, S Nebeshima, K Sorimachi, Proc. 6th Intl. Conf. Molten slags, fluxes and salts, Stockholm, Paper 152 (2000) see also S Nebeshima, Y Itoh, H Tozawa, H Nakato, K Sorimachi, Proc. 4th Intl. Conf. Solidification Processing, Sheffield, 1997 (Sheffield Univ., 2997) p 10.

    Google Scholar 

  8. K. Tsutsumi, Tetsu- to Hagane, 84, 617, (1998).

    Google Scholar 

  9. A. Badri, B.T. Natarajan, CC Snyder, K.D. Powers, F.J. Byrne, M. Byrne, A.W. Cramb, Met. Mater. Trans. B, 36B, 355, (2005).

    Google Scholar 

  10. A. Badri, B.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Byrne, M. Byrne, A.W. Cramb, Met. Mater. Trans B, 36B, 373, (2005).

    Google Scholar 

  11. EY Ko, J Choi, JY Park, I Sohn, Met. Mater. Intl. 20, 141 and 1103 (2014).

    Google Scholar 

  12. E Anzai, T Shigezumi, T Nakano, T Ando, M Ikeda, Nippon Steel Technical Report, 34, 35, (1987).

    Google Scholar 

  13. C. Niggel, F. Felder. Lubrication by slag of continuous casting of steel. Report 9339, ECSC, (Europ. Comm. Sci and Tech. Publ., Luxembourg, 1985).

    Google Scholar 

  14. J. Kor, “An analysis of the fluid flow of liquid mould flux into space between continuous casting mold and steel shell” US Steel Report.

    Google Scholar 

  15. Y. Nuri, T. Ohashi, Trans. ISIJ, 20, B172, (1980).

    Google Scholar 

  16. S. Ogibayashi, Proc. 85th Steelmaking Conf. (2002) (ISS/AIME, Warrendale PA.) p. 175.

    Google Scholar 

  17. K. Okazawa,T. Kajitani, W. Yamada, H. Nakamura, ISIJ Intl., 46, 226 and 234 (2006).

    Google Scholar 

  18. K. Schwerdtfeger, K.H. Tacke, Fundamental study of behaviour of casting powders; Report EUR 9560, (Europ. Comm.Sci. and Tech Publ., Luxembourg, 1985).

    Google Scholar 

  19. YA Meng, BG Thomas, Met. Mater. Trans. B, 34B, 707, (2003).

    Google Scholar 

  20. S. Itoyama, CAMP- ISIJ, 14, 893, (2001).

    Google Scholar 

  21. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, B. Santilanna, ISIJ Intl., 30, 1797, (2010).

    Google Scholar 

  22. C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, J.L. Aruna, Proc. AIST Tech., 2006 vol 1 (ISS, Warrendale, PA) p. 1017.

    Google Scholar 

  23. H.J. Shin, S.H. Kim, B.G. Thomas, G.G. Lee, J.M. Park, J. Sengupta, ISIJ Intl., 46, 1635, (2006).

    Google Scholar 

  24. XN Meng, MY Zhu, Can. Metall. Q, 50, 45, (2011).

    Google Scholar 

  25. ASM Jonayat, BG Thomas, Met. Mater. Trans. B, 45B, 1862, (2014).

    Google Scholar 

  26. T.H. Billany, K.C. Mills, Mould flux performance during continuous casting. Final Report ECSC Contract 7210 CA 820, 1987, (Europ. Comm. Sci. and Tech. Publ. Luxembourg, 1987).

    Google Scholar 

  27. R.J. Gray, Behaviour of mould fluxes during continuous casting. Report EUR 9495 EN 1985) (Europ. Comm. Sci. and Tech. Publ., Luxembourg.1985.

    Google Scholar 

  28. T. Okazaki et al., Tetsu-to Hagane, 65 (10), 265, (1985).

    Google Scholar 

  29. JM Hill, YH Wu, B Witwatanapataphee, J Eng. Math., 36, 311, (1999).

    Google Scholar 

  30. S Ogibayashi, CAMP- ISIJ, 18, 126 and 127 (2003).

    Google Scholar 

  31. T Emi, H Nakato, K Suzuki, Y Iida, T Ueda, Tetsu- to Hagane, 60 (7), 981, (1974) Henry Brutcher Translation HB9357.

    Google Scholar 

  32. T Fastner, C Furst, HP Narzt, G Xia, G Zuba, Proc. 3rd Europ. Conf. Continuous Casting Madrid, (UNESID, Madrid,1998) p. 791.

    Google Scholar 

  33. Y Fukuda, H Kawai, M Okimori, M Hojo, S Tanaka, Proc. 5th Intl. Conf. Slags, Fluxes and molten salts, Sydney,1997, (ISS, Warrendale, PA, 1997) p. 791.

    Google Scholar 

  34. S Ogibayashi, T Mizoguchi, T Kajatani, Intl. Workshop on Thermophys. Data for the Development of Mathematical models of solidification, Gifu City, Japan (1995).

    Google Scholar 

  35. BG Thomas, A Moitra, R McDavid, Iron and Steelmaker, 23 (4), 51 (1996).

    Google Scholar 

  36. Y. Meng, B.G. Thomas, Proc. ISS Tech., Indianapolis, 2003 (ISS, Warrendale, PA, 2003) p. 589.

    Google Scholar 

  37. MS Jenkins Proc. 78th Steelmaking Conf.,1995, (ISS, Warrendale, PA, 1995) p. 669.

    Google Scholar 

  38. MS Jenkins, BG Thomas, WC Chen, RB Mahapatra, Proc. 77th Steelmaking Conf., 1994, (ISS, Warrendale, PA 1994) p. 337.

    Google Scholar 

  39. JW Kim, S. K. Kim, D. S. Kim, Y. D. Lee, J. I. Eum, E. S. Lee., Proc. 78th Steelmaking Conf. 1995, (ISS, Warrendale, PA,1994) p. 333.

    Google Scholar 

  40. K Suzuki, C Matsumura, H Yamamoto, Y Kanrda, Proc. 73rd Steelmaking Conf., 1990, (ISS, Warrendale, PA, 1990) p 197.

    Google Scholar 

  41. M. Wolf, AIME Elect. Furn. Proc., 40, 335, (1982).

    Google Scholar 

  42. M. Wolf, Proc. 2nd Europ. Conf. Continuous Casting, Dusseldorf, 1994 (VDEh, Dusseldorf, 1994) vol 1, p 78.

    Google Scholar 

  43. S. Ogibayashi, K Yamaguchi, T Mukat, T Takahashi, Y Mimura, K Koyama. Y Nagano, T Nagano. Nippon Steel Technical Report, 34, 1, (1987).

    Google Scholar 

  44. Y. Nakamori, Y Fujikake, K Tokiwa, T Kataoka, S Tsuneoka, H Misumi, Proc. 10th Conf. IMEKO TC3 on Measurement and Mass held Kobe, Japan Sept. (1984) and Tetsu-to Hagane, 70(8),1282, (1984).

    Article  Google Scholar 

  45. S. Sridhar, K.C. Mills, V. Ludlow, S.T. Mallaband, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid,1998) p. 807.

    Google Scholar 

  46. F Neumann, J Neal, MA Pedroza, AH Castillejos, FA Acosta, Proc. 79th Steelmaking Conf. 1996. (ISS, Warrendale, PA,1996) p. 249.

    Google Scholar 

  47. K.C. Mills, S. Sridhar, A.S. Normanton, S.T. Mallaband, Proc. Brimacombe Conf., Vancouver, BC, 2000,p 781.

    Google Scholar 

  48. K.C.Mills, A.B. Fox, ISIJ Intl.,43, 1479, (2003).

    Google Scholar 

  49. H. Maeda, T. Hirose, CAMP-ISIJ, 6, 280, (1993).

    Google Scholar 

  50. K Koyama, K Nagano, Y Nagano, T Nakano, Nippon Steel Technical. Report, 34, 41, (1987).

    Google Scholar 

  51. OD Kwon, J Choi, IR Lee, JW Kim, KH Moon, YK Shin, Proc.74th Steelmaking Conf.,1991, (ISS, Warrendale, PA,1991) p. 561.

    Google Scholar 

  52. K. Nakajima, S Hiraki, T Kanazawa, T Murakami, CAMP-ISIJ, 5, 1221, (1992).

    Google Scholar 

  53. K. Tsutsumi, H Murakami, S Nishioka, M Tada, M Nakada, M Komatsu, Tetsu- to- Hagane, 84, 617, (1998).

    Google Scholar 

  54. P E Ramirez-Lopez, P.D. Lee, K.C. Mills, ISIJ Intl., 50 (3), 425, (2010).

    Google Scholar 

  55. M Kawamoto, T Mizukami, M Hanao, H Kikikuchi, T Watanabe, Ironmaking and Steelmaking, 29,199, (2002).

    Google Scholar 

  56. K Watanabe, K Tsutsumi, M Suzuki, H Fujita, S Hatori, T Omoto, ISIJ Intl., 54, 865, (2014).

    Google Scholar 

  57. T. Kitagawa, M. Ishiguro, Proc. 4th Japan-Germany Seminar, (ISIJ, Tokyo, 1980) p. 249.

    Google Scholar 

  58. T. Kajitani, K. Okazawa W. Yamada, H. Yamamura, ISIJ Intl., 46, 250 and 1432 (2006).

    Google Scholar 

  59. IR Lee, JW Kim, J Choi, D Kwon, YK Shin, Proc. Conf. on Continuous casting in developing countries, Beijing, 1993, (SEAISI, Singapore, 1993) p. 814.

    Google Scholar 

  60. T. Mizukami, K Kawakami, T Kitagawa, M Suzuki, S Uchida, Y Komasu, Trans. ISIJ, 26, B164, (1986).

    Google Scholar 

  61. M Suzuki, H Mizukami, T Kitagawa, K Kawakami, S Uchida, Y Komatsu, ISIJ Intl., 31, 254, (1991).

    Google Scholar 

  62. M. Wolf, “Effects of mould oscillation” presented Discussion Group on Continuous casting of mould fluxes, Inst. of Metals, London (1984).

    Google Scholar 

  63. M. Wolf, Proc. Conf. Continuous casting of steel in developing countries, Beijing, China (1994) p. 69.

    Google Scholar 

  64. K. Tsutsumi, T. Nagasaka, M. Hino, ISIJ Intl., 39, 1150, (1999).

    Google Scholar 

  65. T. Emi, H Nakato, K Suzuki, Y Iida, Proc. NOH- BOS Conf. (1978) p. 350.

    Google Scholar 

  66. H. Nakato, I. Muchi, Tetsu-to- Hagane, 66, 33, (1980).

    Google Scholar 

  67. H. Nakato T Sakuraya, T Nozaki, T Emi, H Nikoshawa, Mould fluxes for continuous casting and bottom pour teeming (ISS, Warrendale, PA, 1987) p. 23.

    Google Scholar 

  68. K. Noguchi, K. Sawamura, Proc. 4th Intl. Conf. Cont. Casting, Brussels (1988) (CRM/VDEh) p. 65.

    Google Scholar 

  69. Y. Kobayashi, S. Maruhashi,” Effects of operational on oscillation mark of continuously cast, stainless steel slabs” Proc. 4th Japan-CSSR Seminar, Ostrava. (1983) p. 249.

    Google Scholar 

  70. S. Shimizu, Y. Imada et al., Proc. 6th Intl. Iron and Steel Congress (1990) p. 487.

    Google Scholar 

  71. M. Suzuki, S Miyahara, T Kitagawa, S Uchida, K Okimoto, Tetsu-to Hagane, 78, 113, (1992).

    Article  CAS  Google Scholar 

  72. M Ikeda, K Asano, T Nakano, M Fuji, S Mizoguchi, H Mizumi, Trans. ISIJ, 21, B 511, (1981).

    Google Scholar 

  73. T. Mallaband, Metallugica. UK, private communication cited in AB Fox thesis [1].

    Google Scholar 

  74. T. Mukongo, C Pistorius, A Garbers-Craig, Ironmaking Steelmaking, 31,135, (2004).

    Google Scholar 

  75. Q. Wang, Y. Lu, S. He, K.C. Mills, Z.S. Li, Ironmaking and Steelmaking, 38, 297, (2011).

    Google Scholar 

  76. H Lei, Y Zhao, DQ Geng, ISIJ Intl., 54, 1629, (2014).

    Google Scholar 

  77. T Kishi, H Takeuchi, M Yamamiya, H Tsuboi, T Nakano, T Ando, Nippon Steel Tech. Report, 34, 11, (1987).

    Google Scholar 

  78. M Hanao, Y Tsukaguchi, M Kawamoto, Proc. 4th Intl. Congress Science and Technol., 2008, Gifu, Japan (ISI J, Tokyo, 2008), p. 694.

    Google Scholar 

  79. R. Koldwein, Unpublished Corus Internal Rept (2007) cited in KC Mills, J Kromhout, A Hamoen, R Boom: Proc. Admet Conf, Dnipropetrovsk, 2007(Natl. Metall. Acad. Ukr., Dnipropetrovsk, 2007) vol 2 p 174.

    Google Scholar 

  80. M Washio, M Sugizawa, S Moriwaki, K Kariyaa, S Idogawa, S Takeuchi, Revue de Metallurgie, CIT, 90 (April), 507, (1993).

    Google Scholar 

  81. D W van der Plas, C Platvoet, B Diesesme, JP Radot, JM Galpin, Proc. 2nd Europ. Conf. Continuous casting, Dusseldorf, 1994, Metec Congress’94 (VDEh, Dusseldorf, 1994) p. 109.

    Google Scholar 

  82. MY Ha, SG Lee, SH Seong, J. Mater. Processing Technol. 133. 322, (2003).

    Google Scholar 

  83. G Bocher, U Hoffman, P Muller, Proc. 2nd Europ. Conf. Continuous casting, Dusseldorf, 1994, Metec Congress’94 (VDEh, Dusseldorf, 1994)p. 102.

    Google Scholar 

  84. J Kromhout, RS Schimmel, Proc. 8th Europ. Conf. Continuous casting, Graz, Austria, 2014 (Austrian Met Mater. Soc., Vienna, 2014).

    Google Scholar 

  85. M Tani, T Toh, K Umetsu, K Tanaka, M Zeze, K Tsunenari, K Hayashi, S Fukunaga, Nippon Steel Technical Report, 104, 62, (2013).

    Google Scholar 

  86. JK Park, JW Cho, KH Moon, SH Lee, KH Kim, HS Jeong, Proc. 7th Intl. Conf. Clean Steel, Balatonfured, Hungary, 2007, (Hung. Min. Metall. Soc, Budapest, 2007) p. 264.

    Google Scholar 

  87. M. Wolf, Proc. 2nd Europ. Conf. Continuous Casting, METEC Congress’94 held Dusseldorf, 1994 VDEh, Dusseldorf, 1994), vol 1, p 78.

    Google Scholar 

  88. H Uchiyama, Proc. AISI Technical Committee on Strand casting, 1995 p.

    Google Scholar 

  89. J Sardemann, H Screwe, Stahl u Eisen, 111, (11), 39, (1991).

    Google Scholar 

  90. H Yamamura, T Kajitani, J Nakashima, M Yamasaki, S Mineta, Nippon Steel Technical Report, 104, 54, (2013).

    Google Scholar 

  91. K Tsutsumi, J Ohtake, M Hino, ISIJ Intl., 40, 601, (2000).

    Google Scholar 

  92. H Steinruch, C Rudischer, W Schneider, Non-linear Analysis, Theory, Methods and Applications, 30 (8), 4915, (1997) see also BHM 141 (1996)(9) 399.

    Google Scholar 

  93. H Steinruch, C Rudischer, W Schneider Proc. Conf. Modelling of Casting Welding and Advanced Solidification processes VIII (MCWASP)(Minerals, Metals and Materials Soc. 1998).

    Google Scholar 

  94. PP Sahoo, S Basu, ISIJ Intl., 46, 219, (2006).

    Google Scholar 

  95. M Wolf, Trans ISIJ, 22, B204, (1982).

    Google Scholar 

  96. TJ Billany AS Normanton, KC Mills, P Grieveson, Ironmaking and Steelmaking 18, 403, (1991).

    Google Scholar 

  97. K. Sorimachi, Proc. 5th Intl. Conf. Molten slags, fluxes and salts, Sydney,1997, (ISS,Warrendale, PA, 1997) p. 781.

    Google Scholar 

  98. PV Riboud, Y Roux, Fundamental study of the behaviour of casting powders. Report EUR 9560,1985 (Eur. Comm. Sci and Tech. Publ., Luxembourg, 1985).

    Google Scholar 

  99. R.D.’Haeyer, Influence of chemical composition of continuous casting powders Report EUR 10326 EN (1987) (Eur. Comm. Sci and Tech. Publ., Luxembourg, 1987).

    Google Scholar 

  100. Y Nakamori et al, Nippon Steel Tech. Report, 34, 53, (1987).

    Google Scholar 

  101. B Mairy, D Ramelot, M Dutrieux, Proc, Technol. Conf., Measurement and Control Instrumentation in the Iron and steel Industry, Detroit, 1985 (ISS, Warrendale, 1985) p. 101.

    Google Scholar 

  102. G. Saucedo et al, Proc.74th Steelmaking Conf. (1991) (ISS, Warendale, PA, 1991) p 79.

    Google Scholar 

  103. D. Bowen: Proc. Seminar on Mould powders for continuous casting, held British Steel Teesside Laboratories, Sept (1989) Paper 8.

    Google Scholar 

  104. L. Hering, HP Heller, HW Fenske., Stahl u Eisen, 17, 61, (1992).

    Google Scholar 

  105. S. Ogibayashi et al, Proc.78th Steelmaking Conf., Nashville, TN, 1995, (ISS, Warrendale, PA,1995) p. 451.

    Google Scholar 

  106. H Mizukami, M Komatsu, T Kitagawa, K Kawakami, Trans ISIJ, 24, B 181, (1984).

    Google Scholar 

  107. H Mizukami, K Kawakami, S Miyahara, M Suzuki, T Kitagawa, O Terada, Trans. ISIJ, 25, B 300, (1985).

    Google Scholar 

  108. H Mizukami, A Ozeki, A Kurabayashi, N Hsebe, S Uchida, T Kitagawa, Trans ISIJ, 25, B 301, (1985).

    Google Scholar 

  109. T Sohlgren, private communication, Sweden, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Mills .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mills, K.C., Däcker, CÅ. (2017). Slag Infiltration, Lubrication and Frictional Forces. In: The Casting Powders Book. Springer, Cham. https://doi.org/10.1007/978-3-319-53616-3_2

Download citation

Publish with us

Policies and ethics