Skip to main content

Germline and Somatic Mutations in Human Mesothelioma and Lessons from Asbestos-Exposed Genetically Engineered Mouse Models

  • Chapter
  • First Online:
Asbestos and Mesothelioma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Like cancer generally, malignant mesothelioma is a genetic disease at the cellular level. Specific genes most frequently linked to mesothelioma include the tumor suppressor genes BAP1, CDKN2A, and NF2. Somatic (acquired) mutations of these and other tumor suppressor genes often occur in combination in a given mesothelioma, suggesting that a cascade of genomic alterations is involved in the pathogenesis of this deadly disease. Overall, only a small fraction of individuals exposed to asbestos fibers develop the disorder, suggesting that inherited genetic factors may play a role in predisposing to mesothelioma. A person who is genetically predisposed to mesothelioma carries a DNA variant in one or possibly more genes, but the disease may not be triggered unless there is exposure to asbestos—perhaps even minimally—or some other relevant carcinogenic environmental factor. For example, clustering of mesothelioma cases has been documented in some, but not all, families with a germline inactivating mutation of BAP1. People without a genetic predisposition also develop the disease when exposed to asbestos, but studies in humans and genetically engineered mouse models indicate that the risk is likely to be much lower. In this review, we highlight the current understanding of the role of both hereditary and somatic mutations in human malignant mesothelioma, as well as what has been learned from experimental studies of asbestos-exposed rodent models of mesothelioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman MH, Pilarski R, Cebulla CM et al (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48:856–859

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Vaslet CA, Skele KL et al (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65:8090–8095

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Menges CW, Pei J et al (2009) Activated TNF-alpha/NF-kappaB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice. Proc Natl Acad Sci U S A 106:3430–3435

    Article  Google Scholar 

  • Altomare DA, Menges CW, Xu J et al (2011) Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One 6:e18828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baris YI, Sahin AA, Ozesmi M et al (1978) An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax 33:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baris YI, Saracci R, Simonato L et al (1981) Malignant mesothelioma and radiological chest abnormalities in two villages in Central Turkey. An epidemiological and environmental investigation. Lancet 1:984–987

    Article  CAS  PubMed  Google Scholar 

  • Baser ME, De Rienzo A, Altomare D et al (2002) Neurofibromatosis 2 and malignant mesothelioma. Neurology 59:290–291

    Article  CAS  PubMed  Google Scholar 

  • Baser ME, Rai H, Wallace AJ et al (2005) Neurofibromatosis 2 (NF2) and malignant mesothelioma in a man with a constitutional NF2 missense mutation. Familial Cancer 4:321–322

    Article  CAS  PubMed  Google Scholar 

  • Baumann F, Flores E, Napolitano A et al (2015) Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 36:76–81

    Article  CAS  PubMed  Google Scholar 

  • Bell DW, Jhanwar SC, Testa JR (1997) Multiple regions of allelic loss from chromosome arm 6q in malignant mesothelioma. Cancer Res 57:4057–4062

    CAS  PubMed  Google Scholar 

  • Bernstein D, Dunnigan J, Hesterberg T et al (2013) Health risk of chrysotile revisited. Crit Rev Toxicol 43:154–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betti M, Aspesi A, Biasi A et al (2016) CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma. Cancer Lett 378:120–130

    Article  CAS  PubMed  Google Scholar 

  • Bianchi AB, Mitsunaga S-I, Cheng JQ et al (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A 92:10854–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkqvist AM, Tammilehto L, Anttila S et al (1997) Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer 75:523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borczuk AC, Pei J, Taub RN et al (2016) Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther 17:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bott M, Brevet M, Taylor BS et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno R, Stawiski EW, Goldstein LD et al (2016) Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 48:407–416

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Emri S, Dogan AU et al (2007) A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer 7:147–154

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Flores EG, Emi M et al (2015) Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet 11:e1005633

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceelen WP, Van Dalen T, Van Bockstal M et al (2011) Malignant peritoneal mesothelioma in a patient with Li-Fraumeni syndrome. J Clin Oncol 29:e503–e505

    Article  PubMed  Google Scholar 

  • Cheng JQ, Jhanwar SC, Lu YY et al (1993) Homozygous deletions within 9p21-p22 identify a small critical region of chromosomal loss in human malignant mesothelioma. Cancer Res 53:4761–4763

    CAS  PubMed  Google Scholar 

  • Cheng JQ, Jhanwar SC, Klein WM et al (1994) p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res 54:5547–5551

    CAS  PubMed  Google Scholar 

  • Cheng JQ, Lee WC, Klein MA et al (1999) Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer 24:238–242

    Article  CAS  PubMed  Google Scholar 

  • Cheung M, Talarchek J, Schindeler K et al (2013) Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 206:206–210

    Article  CAS  PubMed  Google Scholar 

  • Cheung M, Kadariya Y, Talarchek J et al (2015a) Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction. Cancer Lett 369:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung M, Kadariya Y, Pei J, Talarchek J, Facciolo F, Visca P, Righi L, Cozzi I, Testa JR, Ascoli V (2015b) An asbestos-exposed family with multiple cases of pleural malignant mesothelioma without inheritance of a predisposing BAP1 mutation. Cancer Genet 208:502–507

    Google Scholar 

  • Chow MT, Tschopp J, Möller A et al (2012) NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol Cell Biol 90:983–986

    Article  CAS  PubMed  Google Scholar 

  • Cote RJ, Jhanwar SC, Novick S et al (1991) Genetic alterations of the p53 gene are a feature of malignant mesothelioma. Cancer Res 51:5410–5416

    CAS  PubMed  Google Scholar 

  • Davis JM (1970) The long term fibrogenic effects of chrysotile and crocidolite asbestos dust injected into the pleural cavity of experimental animals. Br J Exp Pathol 51:617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • de la Fouchardiere A, Cabaret O, Savin L et al (2015) Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet 88:273–277

    Article  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Vogel H et al (1995) Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 14:16–22

    Article  CAS  PubMed  Google Scholar 

  • Faig J, Howard S, Levine EA et al (2015) Changing pattern in malignant mesothelioma survival. Transl Oncol 8:35–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Fu D, Shen XZ (2010) The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta 1806:1–6

    CAS  PubMed  Google Scholar 

  • Farzin M, Toon CW, Clarkson A et al (2015) Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology 47:302–307

    Article  CAS  PubMed  Google Scholar 

  • Flejter WL, Li FP, Antman KH et al (1989) Recurring loss involving chromosomes 1, 3, and 22 in malignant mesothelioma: possible sites of tumor suppressor genes. Genes Chromosomes Cancer 1:148–154

    Article  CAS  PubMed  Google Scholar 

  • Fleury-Feith J, Lecomte C, Renier A et al (2003) Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene 22:3799–3805

    Article  CAS  PubMed  Google Scholar 

  • Frizelle SP, Grim J, Zhou J et al (1998) Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 16:3087–3095

    Article  CAS  PubMed  Google Scholar 

  • Gaytan de Ayala Alonso A, Gutierrez L, Fritsch C et al (2007) A genetic screen identifies novel polycomb group genes in Drosophila. Genetics 176:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Gilson JC (1966) Health hazards of asbestos. Recent studies on its biological effects. Trans Soc Occup Med 16:62–74

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AM (2004) Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 23:630

    Article  PubMed  Google Scholar 

  • Gopinathan A, Tuveson DA (2008) The use of GEM models for experimental cancer therapeutics. Dis Model Mech 1:83–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo G, Chmielecki J, Goparaju C et al (2015) Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res 75:264–269

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Onken MD, Roberson ED et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisada M, Garber JE, Fung CY et al (1998) Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 90:606–611

    Article  CAS  PubMed  Google Scholar 

  • Hoiom V, Edsgard D, Helgadottir H et al (2013) Hereditary uveal melanoma: a report of a germline mutation in BAP1. Genes Chromosomes Cancer 52:378–384

    Article  PubMed  Google Scholar 

  • Illei PB, Ladanyi M, Rusch VW et al (2003) The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer Cytopathol 99:51–56

    Article  CAS  Google Scholar 

  • Ismail IH, Davidson R, Gagne JP et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74:4282–4294

    Article  CAS  PubMed  Google Scholar 

  • James MF, Han S, Polizzano C et al (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29:4250–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadariya Y, Cheung M, Xu J et al (2016a) Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res 76:2836–2844

    Article  CAS  PubMed  Google Scholar 

  • Kadariya Y, Menges CW, Talarchek J et al (2016b) Inflammation-related IL1beta/IL1R signaling promotes the development of asbestos-induced malignant mesothelioma. Cancer Prev Res 9:406–414

    Article  CAS  Google Scholar 

  • Lee WC, Balsara B, Liu Z et al (1996) Loss of heterozygosity analysis defines a critical region in chromosome 1p22 commonly deleted in human malignant mesothelioma. Cancer Res 56:4297–4301

    CAS  PubMed  Google Scholar 

  • Li FP, Lokich J, Lapey J et al (1978) Familial mesothelioma after intense asbestos exposure at home. JAMA 240:467

    Article  CAS  PubMed  Google Scholar 

  • Li FP, Fraumeni JF Jr, Mulvihill JJ et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362

    CAS  PubMed  Google Scholar 

  • Lo Iacono M, Monica V, Righi L et al (2015) Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol 10:492–499

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lago MA, Okada T, Murillo MM et al (2009) Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29:4235–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Rios F, Illei PB, Rusch V et al (2004) Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet 364:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Lu YY, Jhanwar SC, Cheng JQ et al (1994) Deletion mapping of the short arm of chromosome 3 in human malignant mesothelioma. Genes Chromosomes Cancer 9:76–80

    Article  CAS  PubMed  Google Scholar 

  • Lynch HT, Snyder C, Casey MJ (2013) Hereditary ovarian and breast cancer: what have we learned? Ann Oncol 24(Suppl 8):viii83–viii95

    Article  PubMed  Google Scholar 

  • Macdonald JL, Kane AB (1997) Mesothelial cell proliferation and biopersistence of wollastonite and crocidolite asbestos fibers. Fundam Appl Toxicol 38:173–183

    Article  CAS  PubMed  Google Scholar 

  • Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Marsella JM, Liu BL, Vaslet CA et al (1997) Susceptibility of p53-deficient mice to induction of mesothelioma by crocidolite asbestos fibers. Environ Health Perspect 105:1069–1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Menges CW, Altomare DA, Testa JR (2009) FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 8:2528–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menges CW, Kadariya Y, Altomare D et al (2014) Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis. Cancer Res 74:1261–1271

    Article  CAS  PubMed  Google Scholar 

  • Minardi D, Lucarini G, Milanese G et al (2016) Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol 34:338.e11–338.e18

    Article  CAS  Google Scholar 

  • Murakami H, Mizuno T, Taniguchi T et al (2011) LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71:873–883

    Article  CAS  PubMed  Google Scholar 

  • Murthy SS, Testa JR (1999) Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol 180:150–157

    Article  CAS  PubMed  Google Scholar 

  • Napolitano A, Pellegrini L, Dey A et al (2015) Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene 35:1996–2002

    Article  PubMed  Google Scholar 

  • Nasu M, Emi M, Pastorino S et al (2015) High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol 10:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njauw CN, Kim I, Piris A et al (2012) Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 7:e35295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohar JA, Cheung M, Talarchek J et al (2016) Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res 76:206–215

    Article  CAS  PubMed  Google Scholar 

  • Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrofesa RA, Velalopoulou A, Arguiri E et al (2016) Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis 37:177–187

    Article  CAS  PubMed  Google Scholar 

  • Popova T, Hebert L, Jacquemin V et al (2013) Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 92:974–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulikakos PI, Xiao GH, Gallagher R et al (2006) Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 25:5960–5968

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Zhou Z, Chen W et al (2015) BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 6:8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves AL, Puro HE, Smith RG (1974) Inhalation carcinogenesis from various forms of asbestos. Environ Res 8:178–202

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, van Bruggen I, Segal A et al (2006) A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res 66:10786–10794

    Article  CAS  PubMed  Google Scholar 

  • Roushdy-Hammady I, Siegel J, Emri S et al (2001) Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet 357:444–445

    Article  CAS  PubMed  Google Scholar 

  • Ruijs MW, Verhoef S, Wigbout G et al (2006) Late-onset common cancers in a kindred with an Arg213Gln TP53 germline mutation. Familial Cancer 5:169–174

    Article  CAS  PubMed  Google Scholar 

  • Sekido Y, Pass HI, Bader S et al (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55:1227–1231

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kohyama N (1984) Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity. Environ Res 35:277–292

    Article  CAS  PubMed  Google Scholar 

  • Taguchi T, Jhanwar SC, Siegfried JM et al (1993) Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res 53:4349–4355

    CAS  PubMed  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezcan G, Tunca B, Ak S et al (2016) Molecular approach to genetic and epigenetic pathogenesis of early-onset colorectal cancer. World J Gastrointest Oncol 8:83–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiainen M, Tammilehto L, Mattson K et al (1988) Non-random chromosomal abnormalities in malignant pleural mesothelioma. Cancer Genet Cytogenet 33:251–274

    Article  CAS  PubMed  Google Scholar 

  • Vaslet CA, Messier NJ, Kane AB (2002) Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53(+/–) mice. Toxicol Sci 68:331–338

    Article  CAS  PubMed  Google Scholar 

  • Vianna NJ, Polan AK (1978) Non-occupational exposure to asbestos and malignant mesothelioma in females. Lancet 1:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Wadt K, Choi J, Chung JY et al (2012) A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 25:815–818

    Article  CAS  PubMed  Google Scholar 

  • Wadt KA, Aoude LG, Johansson P et al (2014) A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin Genet 88:267–272

    Article  PubMed  Google Scholar 

  • Wagner JC, Berry G (1969) Mesotheliomas in rats following inoculation with asbestos. Br J Cancer 23:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JC, Berry G, Skidmore JW et al (1974) The effects of the inhalation of asbestos in rats. Br J Cancer 29:252–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JC, Skidmore JW, Hill RJ et al (1985) Erionite exposure and mesotheliomas in rats. Br J Cancer 51:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner T, Obenauf AC, Murali R et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43:1018–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner T, Fried I, Ulz P et al (2012) Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol 30:e337–e340

    Article  PubMed  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J et al (2002) p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277:883–886

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Gallagher R, Shetler J et al (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25:2384–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xio S, Li D, Vijg J et al (1995) Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene 11:511–515

    CAS  PubMed  Google Scholar 

  • Xu J, Kadariya Y, Cheung M et al (2014) Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res 74:4388–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CT, You L, Yeh CC et al (2000) Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. J Natl Cancer Inst 92:636–641

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bocchetta M, Kroczynska B et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A 103:10397–10402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa Y, Sato A, Tsujimura T et al (2012) Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci 103:868–874

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Testa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cheung, M., Menges, C.W., Testa, J.R. (2017). Germline and Somatic Mutations in Human Mesothelioma and Lessons from Asbestos-Exposed Genetically Engineered Mouse Models. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics