Skip to main content

Asbestos and Fibrous Erionite

  • Chapter
  • First Online:
Asbestos and Mesothelioma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Very narrow fibrils forming bundles of parallel fibers characterize the asbestiform habit. The width of fibrils varies among asbestos types and among occurrences of the same type. The known asbestiform amphiboles have the composition of anthophyllite, tremolite-actinolite-ferroactinolite (prieskaite), cummingtonite-grunerite (amosite and montasite), magnesioarfvedsonite-arfedsonite, magnesioriebeckite-riebeckite (crocidolite), winchite (Libby amphibole), richterite, and fluoro-edenite-edenite. Amphiboles are common rock-forming minerals that normally occur in a prismatic or massive habit and are not asbestos. The most widely exploited type of asbestos is chrysotile, a member of the serpentine group of minerals. Erionite is a fibrous zeolite; when asbestiform, it is called woolly erionite. This chapter describes the characteristics of these minerals as they occur in an asbestiform habit.

The author has served as a consultant on mineral occurrence, identification, and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aâ–¡ means the structural site A is empty.

  2. 2.

    Miller Indices, e.g., {110}, are used to designate the orientation of planes within a crystal structure. A detailed discussion can be found in Bloss (1971) or other mineralogy textbooks.

References

  • Addison J, Davies LST (1990) Analysis of amphibole asbestos in chrysotile and other minerals. Ann Occup Hyg 34:159–175

    CAS  PubMed  Google Scholar 

  • Atkinson GR, Rose D, Thomas K, et al. (1981) Collection, analysis and characterization of vermiculite samples for fiber content and asbestos contamination. Midwest Research Institute report for the US Environmental Protection Agency Project 4901-A32 under EPA Contract 68-01-5915, Washington, DC

    Google Scholar 

  • Beard ME, Ennis JT, Crankshaw OS, et al. (2007) Preparation of nonasbestiform amphibole minerals for method evaluation and Health Studies Summary Report and appendices. Prepared for Martin, Harper, NIOSH, Morgantown, WV by RTI International. (Hearl F, Personal communication, CDC/NIOSH/OD)

    Google Scholar 

  • Bish DL, Chipera SJ (1991) Detection of trace amounts of erionite using X-ray powder diffraction: erionite in tuffs of Yucca Mountain, Nevada, and central Turkey. Clay Clay Miner 39:437–445

    Article  CAS  Google Scholar 

  • Bish DL, Ming DW (eds) (2001) Natural zeolites: occurrence, properties, applications, Reviews in mineralogy and geochemistry, vol 45. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Bloss FD (1971) Crystallography and crystal chemistry: an introduction. Holt, Rinehart and Winston, New York, NY

    Google Scholar 

  • Cametti G, Pacella A, Mura F et al (2013) New morphological chemical and structural data of woolly erionite-Na from Durkee, Oregon, USA. Am Mineral 98:2155–2163

    Article  CAS  Google Scholar 

  • Campbell WJ, Huggins CW, Wylie AG (1980) Chemical and physical characterization of amosite, chrysotile, crocidolite, and nonfibrous tremolite for oral ingestion studies by the National Institute of Environmental Health Sciences. US Bureau of Mines Report of Investigations 8452. United States Department of the Interior.

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock forming minerals. Volume 2B: double-chain silicates, 2nd edn. The Geological Society, London

    Google Scholar 

  • Deer WA, Howie RA, Wise WS et al (2004) Rock forming minerals. Volume. 4B: framework silicates; silica minerals, feldspathoids and the Zeolites, 2nd edn. The Geological Society, London

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2009) Rock forming minerals. Volume 3B: layered silicates; excluding micas and clay minerals. The Geological Society, London

    Google Scholar 

  • Dogan AU, Dogan M (2008) Re-evaluation and reclassification of erionite. Environ Geochem Health 30:355–366

    Article  CAS  PubMed  Google Scholar 

  • Dorling M, Zussman J (1987) Characteristics of asbestiform and nonasbestiform calcic amphiboles. Lithos 20:469–489

    Article  CAS  Google Scholar 

  • Eborn SK, Aust AE (1995) Effect of iron acquisition on induction of DNA single-strand breaks by erionite, a carcinogenic mineral fiber. Arch Biochem Biophys 316:507–154

    Article  CAS  PubMed  Google Scholar 

  • Ecology and Environment, Inc (EEI) (2005) El Dorado Hills naturally occurring asbestos multimedia exposure assessment. El Dorado Hills, California Preliminary Assessment and Site Inspection Report Interim Final, LabCor Contract No. 68-W-01-012; TDD No.: 09-04-01-0011; Job No.: 001275.0440.01CP (Lee RJ, personal communication)

    Google Scholar 

  • EPA (1993) Test Method: method for the determination of asbestos in bulk building materials. Perkins RL, Harvey BW. EPA/600/R-93/116

    Google Scholar 

  • EPA US (2006) U.S. Environmental Protection Agency Produced Access Database, Libby Montana airborne particles; in the matter of United States of America vs. WR Grace, et al, CR-05-070 M-DWM (D. Montana), 2005–2006 (Lee RJ, personal communication)

    Google Scholar 

  • Gianfagna A, Andreozzi B, Ballirano P et al (2007) Structural and chemical contrasts between prismatic and fibrous fluoro-edenite from Biancavilla, Sicily, Italy. Can Mineral 45:249–262

    Article  CAS  Google Scholar 

  • Gibb GW, Hwang CY (1980) Dimensions of airborne asbestos fibers. In: Wagner JC (ed) Biological effects of mineral fibers, vol 1. IARC Scientific Publication #30, Lyon, pp 69–77

    Google Scholar 

  • Greenwood WS (1998) A mineralogical analysis of fibrous talc. Master of Science Thesis, Department of Geology, University of Maryland, College Park, MD

    Google Scholar 

  • Gude AJ, Sheppard RA (1981) Woolly erionite from the Reese River zeolite deposit, Lander County Nevada and its relations to other erionites. Clay Clay Miner 29:378–384

    Article  CAS  Google Scholar 

  • Guthrie G, Mossman B (eds) (1993) Health effects of mineral dusts, Reviews in mineralogy, vol 28. Mineralogical Society of America, Washington

    Google Scholar 

  • Harper M, Lee EG, Doorn SS et al (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne FC, Oberti R, Ventura GD, Mottana A eds (2007) Amphiboles: Crystal Chemistry, Occurrence, and Health Issues. Reviews in Mineralogy. Vol. 67. Mineralogical Society of America, Washington DC

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher SC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048.

    Google Scholar 

  • Hodgson AA (1979) Chemistry and physics of asbestos. In: Michaels L, Chissick SS (eds) Asbestos. Vol. 1. Applications and Hazards. Wiley, New York, pp 67–114

    Google Scholar 

  • Hume LA, Rimstidt JD (1992) The biodurability of chrysotile asbestos. Am Mineral 77:1125–1128

    CAS  Google Scholar 

  • Keeling JL, Raven MD, Self PG, et al. (2008) Asbestiform antigorite occurrence in South Australia. Proc 9th Int Conf Applied Mineralogy, Brisbane, Australia, pp 329–336

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES et al (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    CAS  Google Scholar 

  • Leake BE, Woolley AR, Birch WD et al (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Am Mineral 89:883–887

    CAS  Google Scholar 

  • Lippmann M, Timbrell V (1990) Particle loading in the human lung: human experience and implications for exposure limits. J Aerosol Med 3:S155–S168

    Article  Google Scholar 

  • Matassa R, Familiari G, Relucenti M et al (2015) A deep look into erionite fibres: an electron microscopy investigation of their self-assembly. Sci Report 5:16757

    Article  CAS  Google Scholar 

  • Meeker GP, Bern AM, Brownfield IK et al (2003) The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby Montana. Am Mineral 88:1955–1969

    Article  CAS  Google Scholar 

  • Mumpton FA, Thompson CS (1975) Mineralogy and origin of the Coalinga asbestos Deposit. Clay Clay Miner 23:131–143

    Article  CAS  Google Scholar 

  • NIOSH (2011) Asbestos fibers and other elongate mineral particles: state of the science and roadmap for research. Current Intelligence Bulletin 62. DHHS:CDC Pub. No. 2011–159

    Google Scholar 

  • Nolan RP, Langer AM, Ross M et al (eds) (2001) Health effects of chrysotile asbestos: contribution of science to risk-management decisions. Mineralogical Society of Canada, Ontario. Special publication 5

    Google Scholar 

  • O’Hanley DS (1986) The origin and mechanical properties of asbestos. Master of Science thesis, University of Minnesota, Twin Cities, MN

    Google Scholar 

  • Paoletti L, Bruni BM (2009) Caratterizzazione dimensionale di fibre anfiboliche nel polmone e nella pleura di cassi di mesothelioma da esposizione ambientale. Med Lav 100:11–20

    CAS  PubMed  Google Scholar 

  • Pooley FD, Clark N (1980) A comparison of fibre dimensions in chrysotile, crocidolite and amosite particles from sampling of airborne dust and from post mortem lung tissue. IARC Sci Publ 30:79–86

    Google Scholar 

  • Redwood SD (1993) Crocidolite and magnesite associated with lake superior-type banded iron formation in Chapare Group of eastern Andes, Bolivia. Institution of Mining and Metallurgy. Section B: Appl Earth Sci 102:114–122

    Google Scholar 

  • Shedd KB (1985) Fiber dimensions of crocidolites from Western Australia, Bolivia, and the Cape and Transvaal Provinces of South Africa. US Bureau of Mines Report of Investigations 8998. US Department of the Interior

    Google Scholar 

  • Shedd KB, Virta RL, Wylie AG (1982) Size and shape characterization of fibrous zeolites by electron microscopy. Bureau of Mines Report of Investigations 8674. US Department of the Interior

    Google Scholar 

  • Siegrist HG, Wylie AG (1980) Characterizing and discriminating the shape of asbestos particles. Environ Res 23:348–361

    Article  PubMed  Google Scholar 

  • Timbrell V (1975) Alignment of respirable asbestos fibres by magnetic fields. Ann Occup Hyg 18:299–311

    CAS  PubMed  Google Scholar 

  • Timbrell V, Pooley F, Wagner JC (1970) Characteristics of respirable asbestos fibers. Proc Int Conf Pneumoconiosis, Shapiro HA (ed), Oxford University Press, pp 120–125

    Google Scholar 

  • Turcotte DL (1986) Fractals and Fragmentation. J Geophys Res 91:1921–1926

    Google Scholar 

  • Van Gosen B (2007) The geology of asbestos in the United States and its practical applications. Environ Eng Geosci 13:55–68

    Article  Google Scholar 

  • Van Gosen BS, Blitz TA, Plumlee GS et al (2013) Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease. Environ Geochem Health 35:419–413

    Article  CAS  PubMed  Google Scholar 

  • Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68

    Article  Google Scholar 

  • Verkouteren JR, Wylie AG (2002) Anomalous optical properties of fibrous tremolite, actinolite and ferro-actinolite. Am Mineral 87:1090–1095

    Article  CAS  Google Scholar 

  • Watson MB (1999) The effect of intergrowths on the properties of fibrous anthophyllite. Master of Science thesis, Department of Geology, University of Maryland, College Park, MD

    Google Scholar 

  • Wylie AG (1979) Optical properties of the fibrous amphiboles. Ann N Y Acad Sci 330:600–605

    Google Scholar 

  • Wylie AG (1993) Modeling asbestos populations: a fractal approach. Can Mineral 30:437–446

    Google Scholar 

  • Wylie AG (2016). Amphibole dust: asbestos fibers, fragments, and mesothelioma. Canadian Mineral (in revision)

    Google Scholar 

  • Wylie AG, Candela PA (2015) Methodologies for determining the sources, characteristics, distribution and abundance of asbestiform and nonasbestiform amphibole and serpentine in ambient air and water. J Toxicol Environ Health Part B: Crit Rev 18:1–42

    Article  CAS  Google Scholar 

  • Wylie, AG, Virta, RL (2016) Size distribution measurements of amosite, crocidolite, chrysotile, and nonfibrous tremolite: digital Repository at the University of Maryland, College Park, MD. http://dx.doi.org/10.13016/M2798Z

  • Wylie AG, Shedd KB, Taylor ME (1982) Measurement of the thickness of amphibole asbestos fibers with the scanning electron microscope and transmission electron microscope. In: Heinrich KFJ (ed) Microbeam Analysis. San Francisco Press, San Francisco, CA, pp 181–187

    Google Scholar 

  • Wylie AG, Virta R, Russek E (1985) Characterizing and discriminating airborne amphibole cleavage fragments and amosite fibers: implications for the NIOSH Method. Am Ind Hyg Assoc J 46:197–201

    Article  CAS  Google Scholar 

  • Wylie AG, Virta RL, Shedd KB, et al. (2015) Size and shape characteristics of airborne amphibole asbestos and amphibole cleavage fragments. Digital Repository at the University of Maryland, http://dx.doi.org/10.13016/M2HP87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann G. Wylie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wylie, A.G. (2017). Asbestos and Fibrous Erionite. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics