VAST: The Virtual Acoustic Space Traveler Dataset

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)


This paper introduces a new paradigm for sound source localization referred to as virtual acoustic space traveling (VAST) and presents a first dataset designed for this purpose. Existing sound source localization methods are either based on an approximate physical model (physics-driven) or on a specific-purpose calibration set (data-driven). With VAST, the idea is to learn a mapping from audio features to desired audio properties using a massive dataset of simulated room impulse responses. This virtual dataset is designed to be maximally representative of the potential audio scenes that the considered system may be evolving in, while remaining reasonably compact. We show that virtually-learned mappings on this dataset generalize to real data, overcoming some intrinsic limitations of traditional binaural sound localization methods based on time differences of arrival.


Sound localization Binaural hearing Room simulation Machine learning 


  1. 1.
    Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)CrossRefGoogle Scholar
  2. 2.
    Deleforge, A., Forbes, F., Horaud, R.: Acoustic space learning for sound-source separation and localization on binaural manifolds. Int. J. Neural Syst. 25(01), 1440003 (2015)CrossRefGoogle Scholar
  3. 3.
    Deleforge, A., Forbes, F., Horaud, R.: High-dimensional regression with gaussian mixtures and partially-latent response variables. Stat. Comput. 25(5), 893–911 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deleforge, A., Horaud, R., Schechner, Y.Y., Girin, L.: Co-localization of audio sources in images using binaural features and locally-linear regression. IEEE Trans. Audio Speech Lang. Process. 23(4), 718–731 (2015)CrossRefGoogle Scholar
  5. 5.
    Faiz, A., Ducourneau, J., Khanfir, A., Chatillon, J.: Measurement of sound diffusion coefficients of scattering furnishing volumes present in workplaces. In: Acoustics 2012 (2012)Google Scholar
  6. 6.
    Gardner, W.G., Martin, K.D.: HRTF measurements of a kemar. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995)CrossRefGoogle Scholar
  7. 7.
    Hornstein, J., Lopes, M., Santos-Victor, J., Lacerda, F.: Sound localization for humanoid robots-building audio-motor maps based on the HRTF. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1170–1176. IEEE (2006)Google Scholar
  8. 8.
    Kataria, S., Gaultier, C., Deleforge, A.: Hearing in a shoe-box: binaural source position and wall absorption estimation using virtually supervised learning. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2017)Google Scholar
  9. 9.
    Kitić, S., Bertin, N., Gribonval, R.: Hearing behind walls: localizing sources in the room next door with cosparsity. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3087–3091. IEEE (2014)Google Scholar
  10. 10.
    Lu, Y.C., Cooke, M.: Binaural estimation of sound source distance via the direct-to-reverberant energy ratio for static and moving sources. IEEE Trans. Audio Speech Lang. Process. 18(7), 1793–1805 (2010)CrossRefGoogle Scholar
  11. 11.
    Ma, N., May, T., Wierstorf, H., Brown, G.J.: A machine-hearing system exploiting head movements for binaural sound localisation in reverberant conditions. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2699–2703. IEEE (2015)Google Scholar
  12. 12.
    Otani, M., Hirahara, T., Ise, S.: Numerical study on source-distance dependency of head-related transfer functions. J. Acoust. Soc. Am. 125(5), 3253–3261 (2009)CrossRefGoogle Scholar
  13. 13.
    Parada, P.P., Sharma, D., Lainez, J., Barreda, D., van Waterschoot, T., Naylor, P.A.: A single-channel non-intrusive c50 estimator correlated with speech recognition performance. IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 719–732 (2016)CrossRefGoogle Scholar
  14. 14.
    Raykar, V.C., Duraiswami, R., Yegnanarayana, B.: Extracting the frequencies of the pinna spectral notches in measured head related impulse responses. J. Acoust. Soc. Am. 118(1), 364–374 (2005)CrossRefGoogle Scholar
  15. 15.
    Sanchez-Riera, J., Alameda-Pineda, X., Wienke, J., Deleforge, A., Arias, S., Čech, J., Wrede, S., Horaud, R.: Online multimodal speaker detection for humanoid robots. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 126–133. IEEE (2012)Google Scholar
  16. 16.
    Schimmel, S.M., Muller, M.F., Dillier, N.: A fast and accurate “shoebox” room acoustics simulator. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 241–244. IEEE (2009)Google Scholar
  17. 17.
    Schroeder, M.R.: New method of measuring reverberation time. J. Acoust. Soc. Am. 37(3), 409–412 (1965)CrossRefGoogle Scholar
  18. 18.
    Shinn-Cunningham, B.G., Kopco, N., Martin, T.J.: Localizing nearby sound sources in a classroom: binaural room impulse responses. J. Acoust. Soc. Am. 117(5), 3100–3115 (2005)CrossRefGoogle Scholar
  19. 19.
    Talmon, R., Cohen, I., Gannot, S.: Supervised source localization using diffusion kernels. In: 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 245–248. IEEE (2011)Google Scholar
  20. 20.
    Viste, H., Evangelista, G.: On the use of spatial cues to improve binaural source separation. In: Proceedings of 6th International Conference on Digital Audio Effects (DAFx-03), pp. 209–213. No. LCAV-CONF-2003-026 (2003)Google Scholar
  21. 21.
    Vorländer, M.: Auralization: Fundamentals of Acoustics, Modeling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Wabnitz, A., Epain, N., Jin, C., Van Schaik, A.: Room acoustics simulation for multichannel microphone arrays. In: Proceedings of the International Symposium on Room Acoustics, pp. 1–6 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Inria Rennes - Bretagne AtlantiqueRennesFrance
  2. 2.Indian Institute of Technology KanpurKanpurIndia

Personalised recommendations