Speaker Tracking on Multiple-Manifolds with Distributed Microphones

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)


Speaker tracking in a reverberant enclosure with an ad hoc network of multiple distributed microphones is addressed in this paper. A set of prerecorded measurements in the enclosure of interest is used to construct a data-driven statistical model. The function mapping the measurement-based features to the corresponding source position represents complex unknown relations, hence it is modelled as a random Gaussian process. The process is defined by a covariance function which encapsulates the relations among the available measurements and the different views presented by the distributed microphones. This model is intertwined with a Kalman filter to capture both the smoothness of the source movement in the time-domain and the smoothness with respect to patterns identified in the set of available prerecorded measurements. Simulation results demonstrate the ability of the proposed method to localize a moving source in reverberant conditions.


Speaker tracking Distributed microphones Gaussian process Acoustic manifold Kalman filter 


  1. 1.
    Allen, J., Berkley, D.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)CrossRefGoogle Scholar
  2. 2.
    Benesty, J.: Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 107(1), 384–391 (2000)CrossRefGoogle Scholar
  3. 3.
    Bertin, N., Kitić, S., Gribonval, R.: Joint estimation of sound source location and boundary impedance with physics-driven cosparse regularization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6340–6344 (2016)Google Scholar
  4. 4.
    Deleforge, A., Forbes, F., Horaud, R.: Acoustic space learning for sound-source separation and localization on binaural manifolds. Int. J. Neural Syst. 25(1), 1440003 (2015)CrossRefGoogle Scholar
  5. 5.
    Dmochowski, J.P., Benesty, J.: Steered beamforming approaches for acoustic source localization. In: Cohen, I., Benesty, J., Gannot, S. (eds.) Speech Processing in Modern Communication, pp. 307–337. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Gannot, S., Burshtein, D., Weinstein, E.: Signal enhancement using beamforming and nonstationarity with applications to speech. IEEE Trans. Sign. Process. 49(8), 1614–1626 (2001)CrossRefGoogle Scholar
  7. 7.
    Gannot, S., Dvorkind, T.G.: Microphone array speaker localizers using spatial-temporal information. EURASIP J. Adv. Sig. Process. 2006(1), 1–17 (2006)zbMATHGoogle Scholar
  8. 8.
    Habets, E.A.P.: Room impulse response (RIR) generator, July 2006.
  9. 9.
    Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Sig. Process. 24(4), 320–327 (1976)CrossRefGoogle Scholar
  10. 10.
    Laufer-Goldshtein, B., Talmon, R., Gannot, S.: A study on manifolds of acoustic responses. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 203–210. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-22482-4_23 Google Scholar
  11. 11.
    Laufer-Goldshtein, B., Talmon, R., Gannot, S.: Semi-supervised source localization on multiple-manifolds with distributed microphones. pre-print arXiv:1610.04770v1, September 2016
  12. 12.
    Salvati, D., Drioli, C., Foresti, G.L.: A weighted MVDR beamformer based on SVM learning for sound source localization. Pattern Recogn. Lett. 84, 15–21 (2016)CrossRefGoogle Scholar
  13. 13.
    Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)CrossRefGoogle Scholar
  14. 14.
    Schwartz, O., Gannot, S.: Speaker tracking using recursive EM algorithms. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 392–402 (2014)CrossRefGoogle Scholar
  15. 15.
    Smaragdis, P., Boufounos, P.: Position and trajectory learning for microphone arrays. IEEE Trans. Audio Speech Lang. Process. 15(1), 358–368 (2007)CrossRefGoogle Scholar
  16. 16.
    Ward, D.B., Lehmann, E.A., Williamson, R.C.: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Trans. Speech Audio Process. 11(6), 826–836 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Bar-Ilan UniversityRamat-GanIsrael
  2. 2.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations