Advertisement

High-Resolution Subspace-Based Methods: Eigenvalue- or Eigenvector-Based Estimation?

Conference paper
  • 1.5k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)

Abstract

In subspace-based methods for mulditimensional harmonic retrieval, the modes can be estimated either from eigenvalues or eigenvectors. The purpose of this study is to find out which way is the best. We compare the state-of-the art methods N-D ESPRIT and IMDF, propose a modification of IMDF based on least-squares criterion, and derive expressions of the first-order perturbations for these methods. The theoretical expressions are confirmed by the computer experiments.

Keywords

Frequency estimation Multidimensional harmonic retrieval Multilevel Hankel matrix N-D ESPRIT IMDF Perturbation analysis 

References

  1. 1.
    Gershman, A.B., Sidiropoulos, N.D.: Space-Time Processing for MIMO Communications. Wiley Online Library, Hoboken (2005)CrossRefGoogle Scholar
  2. 2.
    Haardt, M., Roemer, F., Del Galdo, G.: Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems. IEEE Trans. Signal Process. 56(7), 3198–3213 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hua, Y.: Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Process. 40(9), 2267–2280 (1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    Li, F., Liu, H., Vaccaro, R.J.: Performance analysis for DOA estimation algorithms: unification, simplification, and observations. IEEE Trans. Aerosp. Electron Syst. 29(4), 1170–1184 (1993)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Razavilar, J., Liu, K.: A high-resolution technique for multidimensional NMR spectroscopy. IEEE Trans. Biomed. Eng. 45(1), 78–86 (1998)CrossRefGoogle Scholar
  6. 6.
    Liu, J., Liu, X., Ma, X.: Multidimensional frequency estimation with finite snapshots in the presence of identical frequencies. IEEE Trans. Signal Process. 55, 5179–5194 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, J., Liu, X.: An eigenvector-based approach for multidimensional frequency estimation with improved identifiability. IEEE Trans. Signal Process. 54(12), 4543–4556 (2006)CrossRefGoogle Scholar
  8. 8.
    Rouquette, S., Najim, M.: Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods. IEEE Trans. Signal Process. 49(1), 237–245 (2001)CrossRefGoogle Scholar
  9. 9.
    Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sacchini, J., Steedly, W., Moses, R.: Two-dimensional Prony modeling and parameter estimation. IEEE Trans. Signal Process. 41(11), 3127–3137 (1993)CrossRefGoogle Scholar
  11. 11.
    Sahnoun, S., Djermoune, E.H., Brie, D., Comon, P.: A simultaneous sparse approximation method for multidimensional harmonic retrieval. Signal Process. 137, 36–48 (2017)CrossRefGoogle Scholar
  12. 12.
    Sahnoun, S., Usevich, K., Comon, P.: Multidimensional ESPRIT: Algorithm, computations and perturbation analysis. Technical report (2016). hal-01360438
  13. 13.
    So, H.C., Chan, F., Lau, W., Chan, C.F.: An efficient approach for two-dimensional parameter estimation of a single-tone. IEEE Trans. Signal Process. 58(4), 1999–2009 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sun, W., So, H.C.: Accurate and computationally efficient tensor-based subspace approach for multidimensional harmonic retrieval. IEEE Trans. Signal Process. 60(10), 5077–5088 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, Z.: Perturbation analysis for subspace decomposition with applications in subspace-based algorithms. IEEE Trans. Signal Process. 50(11), 2820–2830 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GIPSA-lab, CNRS and Univ. Grenoble AlpesGrenobleFrance

Personalised recommendations