The 2016 Signal Separation Evaluation Campaign

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)


In this paper, we report the results of the 2016 community-based Signal Separation Evaluation Campaign (SiSEC 2016). This edition comprises four tasks. Three focus on the separation of speech and music audio recordings, while one concerns biomedical signals. We summarize these tasks and the performance of the submitted systems, as well as provide a small discussion concerning future trends of SiSEC.


Empirical Mode Decomposition Source Separation Nonnegative Matrix Factorization Deep Neural Network Ensemble Empirical Mode Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ono, N., Koldovsky, Z., Miyabe, S., Ito, N.: The 2013 signal separation evaluation campaign. In: Proceedings of MLSP, pp. 1–6, September 2013Google Scholar
  2. 2.
    Ono, N., Rafii, Z., Kitamura, D., Ito, N., Liutkus, A.: The 2015 signal separation evaluation campaign. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 387–395. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-22482-4_45 Google Scholar
  3. 3.
    Vincent, E., Griboval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. ASLP 14(4), 1462–1469 (2006)Google Scholar
  4. 4.
    Emiya, V., Vincent, E., Harlander, N., Hohmann, V.: Subjective and objective quality assessment of audio source separation. IEEE Trans. ASLP 19(7), 2046–2057 (2011)Google Scholar
  5. 5.
    Chan, T-S., Yeh, T-C., Fan, Z-C., Chen, H-W., Su, L., Yang, Y-H., Jang, R.: Vocal activity informed singing voice separation with the iKala dataset. In: Proceedings of ICASSP, pp. 718–722, April 2015Google Scholar
  6. 6.
    Durrieu, J.-L., David, B., Richard, G.: A musically motivated mid-level representation for pitch estimation and musical audio source separation. IEEE J. Sel. Top. Sig. Process. 5(6), 1180–1191 (2011)CrossRefGoogle Scholar
  7. 7.
    Huang, P., Chen, S., Smaragdis, P., Hasegawa-Johnson, M.: Singing-voice separation from monaural recordings using robust principal component analysis. In: Proceedings of ICASSP, pp. 57–60, March 2012Google Scholar
  8. 8.
    Liutkus, A., FitzGerald, D., Rafii, Z., Daudet, L.: Scalable audio separation with light kernel additive modelling. In: Proceedings of ICASSP, pp. 76–80, April 2015Google Scholar
  9. 9.
    Nugraha, A., Liutkus, A., Vincent, E.: Multichannel music separation with deep neural networks. In: Proceedings of EUSIPCO (2016)Google Scholar
  10. 10.
    Ozerov, A., Vincent, E., Bimbot, F.: A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. ASLP 20(4), 1118–1133 (2012)Google Scholar
  11. 11.
    Rafii, Z., Pardo, B.: REpeating pattern extraction technique (REPET): a simple method for music/voice separation. IEEE Trans. ASLP 21(1), 71–82 (2013)Google Scholar
  12. 12.
    Liutkus, A., Rafii, Z., Badeau, R., Pardo, B., Richard, G.: Adaptive filtering for music/voice separation exploiting the repeating musical structure. In: Proceedings of ICASSP, pp. 53–56, March 2012Google Scholar
  13. 13.
    Rafii, Z., Pardo, B.: Music/voice separation using the similarity matrix. In: Proceedings of ISMIR, pp. 583–588, October 2012Google Scholar
  14. 14.
    Wood, S., Rouat, J.: Blind speech separation with GCC-NMF. In: Proceedings of Interspeech (2016)Google Scholar
  15. 15.
    Cho, J., Yoo, C.D.: Underdetermined convolutive BSS: Bayes risk minimization based on a mixture of super-Gaussian posterior approximation. IEEE Trans. Audio Speech Lang. Process. 23(5), 828–839 (2011)CrossRefGoogle Scholar
  16. 16.
    Adiloglu, K., Vincent, E.: “Variational Bayesian inference for source separation and robust feature extraction,” Technical report, INRIA (2012).
  17. 17.
    Hirasawa, Y., Yasuraoka, N., Takahashi, T., Ogata, T., Okuno, H.G.: A GMM sound source model for blind speech separation in under-determined conditions. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 446–453. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28551-6_55 CrossRefGoogle Scholar
  18. 18.
    Iso, K., Araki, S., Makino, S., Nakatani, T., Sawada, H., Yamada, T., Nakamura, A.: Blind source separation of mixed speech in a high reverberation environment. In: Proceedings of Hands-free Speech Communication and Microphone Arrays, pp. 36–39 (2011)Google Scholar
  19. 19.
    Cho, J., Choi, J., Yoo, C.D.: Underdetermined convolutive blind source separation using a novel mixing matrix estimation and MMSE-based source estimation. In: Proceedings of IEEE MLSP (2011)Google Scholar
  20. 20.
    Nesta, F., Omologo, M.: Convolutive underdetermined source separation through weighted interleaved ICA and spatio-temporal source correlation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 222–230. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28551-6_28 CrossRefGoogle Scholar
  21. 21.
    Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acousti. Speech Sig. Process. 24(4), 320–327 (1976)CrossRefGoogle Scholar
  22. 22.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  23. 23.
    Blandin, C., Ozerov, A., Vincent, E.: Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Sig. Process. 92(8), 1950–1960 (2012)CrossRefGoogle Scholar
  24. 24.
    Duong, H.-T.T., Nguyen, Q.-C., Nguyen, C.-P., Tran, T.-H., Duong, N.Q.K.: Speech enhancement based on nonnegative matrix factorization with mixed group sparsity constraint. In: Proceedings of ACM International Symposium on Information and Communication Technology, pp. 247–251 (2015)Google Scholar
  25. 25.
    Stöter, F.-R., Liutkus, A., Badeau, R., Edler, B., Magron, P.: Common fate model for unison source separation. In: Proceedings of ICASSP (2016)Google Scholar
  26. 26.
    Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., Mitsufuji, Y.: Improving Music Source Separation Based On Deep Neural Networks Through Data Augmentation and Network Blending (2017). Submitted to ICASSPGoogle Scholar
  27. 27.
    Grais, E., Roma, G., Simpson, A.J., Plumbley, M.: Single-channel audio source separation using deep neural network ensembles. In: Proceedings of AES 140, May 2016Google Scholar
  28. 28.
    Jeong, I.-Y., Lee, K.: Singing voice separation using RPCA with weighted l1-norm. In: Proceedings of LVA/ICA (2017)Google Scholar
  29. 29.
    Huang, P., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Joint optimization of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 2136–2147 (2015)CrossRefGoogle Scholar
  30. 30.
    Simpson, A., Roma, G., Grais, E., Mason, R., Hummersone, C., Plumbley, M., Liutkus, A.: Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods. In: Proceedings of EUSIPCO (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Inria, Speech Processing TeamVillers-lès-NancyFrance
  2. 2.International Audio Laboratories ErlangenErlangenGermany
  3. 3.Gracenote, Applied ResearchEmeryvilleUSA
  4. 4.SOKENDAI (The Graduate University for Advanced Studies)KanagawaJapan
  5. 5.GIPSA-lab, CNRS, Univ. Grenoble Alpes, Grenoble INPGrenobleFrance
  6. 6.NTT Communication Science LaboratoriesNTT CorporationTokyoJapan
  7. 7.National Institute of InformaticsTokyoJapan
  8. 8.UJF-Grenoble 1/CNRS/TIMC-IMAG UMR 5525GrenobleFrance

Personalised recommendations