Skip to main content

Modeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

Providing flexibility and user-interpretability in nonlinear system identification can be achieved by means of block-oriented methods. One of such block-oriented system structures is the parallel Wiener-Hammerstein system, which is a sum of Wiener-Hammerstein branches, consisting of static nonlinearities sandwiched between linear dynamical blocks. Parallel Wiener-Hammerstein models have more descriptive power than their single-branch counterparts, but their identification is a non-trivial task that requires tailored system identification methods. In this work, we will tackle the identification problem by performing a tensor decomposition of the Volterra kernels obtained from the nonlinear system. We illustrate how the parallel Wiener-Hammerstein block-structure gives rise to a joint tensor decomposition of the Volterra kernels with block-circulant structured factors. The combination of Volterra kernels and tensor methods is a fruitful way to tackle the parallel Wiener-Hammerstein system identification task. In simulation experiments, we were able to reconstruct very accurately the underlying blocks under noisy conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Remark that the introduction of the extra mode is similar to the extraction of the weights \(\lambda _i\) in the notation \(\left[ \!\left[ \mathbf {\lambda }; \mathbf {A}, \mathbf {B}, \mathbf {C} \right] \!\right] \) of [10] where the columns of the factor matrices \(\mathbf {A}\), \(\mathbf {B}\) and \(\mathbf {C}\) are scaled to have unit norm. Our notation is intentionally different in the sense that we have normalized the first elements of the columns of \(\mathbf {P}\) and \(\mathbf {q}\) equal to one, for practical purposes.

References

  1. Boyd, S., Chua, L.: Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE Trans. Circ. Syst. 32(11), 1150–1171 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  3. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Goulart, J.H.M., Boizard, M., Boyer, R., Favier, G., Comon, P.: Tensor CP decomposition with structured factor matrices: algorithms and performance. IEEE J. Sel. Top. Signal Process. 10(4), 757–769 (2016)

    Article  Google Scholar 

  5. Favier, G., Kibangou, A.Y.: Tensor-based methods for system identification - Part 2: three examples of tensor-based system identification methods. Int. J. Sci. Tech. Autom. Control Comput. Eng. (IJ-STA) 3(1), 870–889 (2006)

    Google Scholar 

  6. Giannakis, G.B., Serpedin, E.: A bibliography on nonlinear system identification. IEEE Trans. Signal Process. 81(3), 533–580 (2001)

    MATH  Google Scholar 

  7. Giri, F., Bai, E.W.: Block-Oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences. Springer, London (2010)

    Book  MATH  Google Scholar 

  8. Harshman, R.A.: Foundations of the PARAFAC procedure: model and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, vol. 16, no. 1, pp. 1–84 (1970)

    Google Scholar 

  9. Kibangou, A.Y., Favier, G.: Tensor analysis-based model structure determination and parameter estimation for block-oriented nonlinear systems. IEEE J. Sel. Top. Signal Process. 4(3), 514–525 (2010)

    Article  Google Scholar 

  10. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River (1999)

    Book  MATH  Google Scholar 

  12. Palm, G.: On representation and approximation of nonlinear systems. Biol. Cybern. 34(1), 49–52 (1979)

    Article  MATH  Google Scholar 

  13. Pintelon, R., Schoukens, J.: System Identification: A Frequency Domain Approach, 2nd edn. Wiley-IEEE Press, New York (2012)

    Book  MATH  Google Scholar 

  14. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980)

    MATH  Google Scholar 

  15. Schoukens, J., Pintelon, R., Dobrowiecki, T., Rolain, Y.: Identification of linear systems with nonlinear distortions. Automatica 41, 491–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schoukens, M., Tiels, K.: Identification of nonlinear block-oriented systems starting from linear approximations: a survey (2012). (Preprint arXiv:1607.01217)

  17. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sorber, L., Van Barel, M., De Lathauwer, L.: Structured data fusion. IEEE J. Sel. Top. Signal Process. 9, 586–600 (2015)

    Article  Google Scholar 

  19. Van Eeghem, F., De Lathauwer, L.: Algorithms for CPD with block-circulant factors. Technical report 16–100, KU Leuven ESAT/STADIUS (2016)

    Google Scholar 

  20. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  21. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0, March 2016. http://www.tensorlab.net/

  22. Westwick, D.T., Ishteva, M., Dreesen, P., Schoukens, J.: Tensor factorization based estimates of parallel Wiener-Hammerstein models. Technical report, University of Calgary, Calgary, Canada and Vrije Universiteit Brussel, Brussels, Belgium. IFAC World Congress (2016, submitted)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Fund for Scientific Research (FWO-Vlaanderen), by the Flemish Government (Methusalem), the Belgian Government through the Inter-university Poles of Attraction (IAP VII) Program, by the ERC Advanced Grant SNLSID under contract 320378 and by FWO projects G.0280.15N and G.0901.17N. The authors want to thank Otto Debals and Nico Vervliet for help with the use of Tensorlab/SDF and the suggestion to extract the vector \(\mathbf {q}\) into an additional tensor mode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dreesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dreesen, P., Westwick, D.T., Schoukens, J., Ishteva, M. (2017). Modeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics