Advertisement

Higher-Order Block Term Decomposition for Spatially Folded fMRI Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)

Abstract

The growing use of neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has been proved quite effective in exploiting their multiway nature. The advantages of tensorial methods over matrix-based approaches have also been demonstrated in the context of functional magnetic resonance imaging (fMRI) data analysis. However, such methods can become ineffective in demanding scenarios, involving, e.g., strong noise and/or significant overlapping of activated regions. This paper aims at investigating the possible gains that can be obtained from a better exploitation of the spatial dimension, through a higher (than 3)-order tensor modeling of the fMRI signals. In this context, a higher-order Block Term Decomposition (BTD) is applied, for the first time in fMRI analysis. Its effectiveness in handling strong instances of noise is demonstrated via extensive simulation results.

Keywords

fMRI Tensors BTD CPD TPICA 

Notes

Acknowledgments

The authors would like to thank Profs. A. Stegeman and N. Helwig for providing the datasets used in [13] and [14], respectively, and Prof. S. Van Huffel for her critical comments on earlier version of this paper. Constructive comments from the reviewers are also gratefully acknowledged. This research has been funded by the European Union’s Seventh Framework Programme (H2020-MSCA-ITN-2014) under grant agreement No. 642685 MacSeNet.

References

  1. 1.
    Lindquist, M.A.: The statistical analysis of fMRI data. Stat. Sci. 23, 439–464 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective. Academic Press, Boston (2015)Google Scholar
  3. 3.
    Andersen, A.H., Rayens, W.S.: Structure-seeking multilinear methods for the analysis of fMRI data. NeuroImage 22, 728–739 (2004)CrossRefGoogle Scholar
  4. 4.
    Calhoun, V.D., Adalı, T.: Unmixing fMRI with independent component analysis. IEEE Eng. Med. Biol. Mag. 25, 79–90 (2006)CrossRefGoogle Scholar
  5. 5.
    Andersen, K.W., Mørup, M., Siebner, H., Madsen, K.H., Hansen, L.K.: Identifying modular relations in complex brain networks. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2012)Google Scholar
  6. 6.
    Sidiropoulos, N., Bro, R.: On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 14, 229–239 (2000)CrossRefGoogle Scholar
  7. 7.
    Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015)CrossRefGoogle Scholar
  8. 8.
    De Lathauwer, L.: Decompositions of a higher-order tensor in block terms-Part I: lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Lathauwer, L.: Decompositions of a higher-order tensor in block terms-Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lathauwer, L.: Block component analysis, a new concept for blind source separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 1–8. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28551-6_1 CrossRefGoogle Scholar
  11. 11.
    Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Work. Papers in Phonetics, pp. 1–84(1970)Google Scholar
  12. 12.
    Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Stegeman, A.: Comparing Independent Component Analysis and the PARAFAC model for artificial multi-subject fMRI data. Unpublished Technical report, University of Groningen (2007)Google Scholar
  14. 14.
    Helwig, N.E., Hong, S.: A critique of tensor probabilistic independent component analysis: implications and recommendations for multi-subject fmri data analysis. J. Neurosci. Methods 2, 263–273 (2013)CrossRefGoogle Scholar
  15. 15.
    Bro, R., Kiers, H.: A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 17(5), 274–286 (2003)CrossRefGoogle Scholar
  16. 16.
    Castellanos, J.L., Gmez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43(4), 359–373 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Beckmann, C., Smith, S.: Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25, 294–311 (2005)CrossRefGoogle Scholar
  18. 18.
    Beckmann, C., Smith, S.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152 (2004)CrossRefGoogle Scholar
  19. 19.
    Phan, A.H., Tichavsky, P., Cichocki, A.: CANDECOMP/PARAFAC decomposition of high-order tensors through tensor reshaping. IEEE Trans. Signal Process. 61(19), 4847–4860 (2013)CrossRefGoogle Scholar
  20. 20.
    Tichavsky, P., Phan, A.H., Koldovsky, Z.: Cramér-Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition. IEEE Trans. Signal Process. 61(8), 1986–1997 (2013)CrossRefGoogle Scholar
  21. 21.
    Norgaard, L.: Classification and prediction of quality and process parameters of thick juice and beet sugar by fluorescence spectroscopy and chemometrics. Zuckerindustrie 120(11), 970–981 (1995)Google Scholar
  22. 22.
    Phillips, N.C.: Gasthuisberg University Hospital raises fMRI to new level with Intera 3.0 T. http://netforum.healthcare.philips.com/
  23. 23.
    Hunyadi, B., Camps, D., Sorber, L., Van Paesschen, W., De Vos, M., Van Huffel, S., De Lathauwer, L.: Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Signal Process. (2014). doi: 10.1186/1687-6180-2014-139
  24. 24.
    Phan, A.H., Cichocki, A., Zdunek, R., Lehky, S.: From basis components to complex structural patterns. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver (2013)Google Scholar
  25. 25.
    Brie, D., Miron, S., Caland, F., Mustin, C.: An uniqueness condition for the 4-way CANDECOMP/PARAFAC model with collinear loadings in three modes. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague (2011)Google Scholar
  26. 26.
    Sorber, L., Barel, M.V., De Lathauwer, L.: Structured data fusion. IEEE J. Sel. Topics Signal Process. 9, 586–600 (2015)CrossRefGoogle Scholar
  27. 27.
    Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab user guide (2016). http://www.tensorlab.net

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Technology Institute & “Press Diophantus” (CTI)PatrasGreece
  2. 2.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece
  4. 4.LIBRA MLI Ltd.EdinburghUK
  5. 5.IAASARSNational Observatory of AthensPenteliGreece

Personalised recommendations