Advertisement

Complex Valued Robust Multidimensional SOBI

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)

Abstract

Complex valued random variables and time series are common in various applications, for example in wireless communications, radar applications and magnetic resonance imaging. These applications often involve the famous blind source separation problem. However, the observations rarely fully follow specific models and robust methods that allow deviations from the model assumptions and endure outliers are required. We propose a new algorithm, robust multidimensional eSAM-SOBI, for complex valued blind source separation. The algorithm takes into account possible multidimensional spatial or temporal dependencies, whereas traditional SOBI-like procedures only consider dependencies in a single direction. In applications like functional magnetic resonance imaging, the dependencies are indeed not only one-dimensional. We provide a simulation study with complex valued data to illustrate the better performance of the methods that utilize multidimensional autocovariance in the presence of two-dimensional dependency. Moreover, we also examine the performance of the multidimensional eSAM-SOBI in the presence of outliers.

Keywords

Complex valued BSS SOBI Time series Multidimensional autocovariance 

Notes

Acknowledgements

The work of Klaus Nordhausen was supported by the Academy of Finland Grant 268703. The authors wish to thank the referees for their excellent comments that helped improve the paper.

References

  1. 1.
    Maronna, R., Martin, D., Yohai, V.: Robust Statistics: Theory and Methods. Wiley, Chichester (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)CrossRefGoogle Scholar
  3. 3.
    Miettinen, J., Illner, K., Nordhausen, K., Oja, H., Taskinen, S., Theis, F.J.: Separation of uncorrelated stationary time series using autocovariance matrices. J. Time Ser. Anal. 37, 336–354 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ilmonen, P., Nordhausen, K., Oja, H., Theis, F.: An affine equivariant robust second-order BSS method. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 328–335. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-22482-4_38 Google Scholar
  5. 5.
    Theis, F.J., Meyer-Bäse, A., Lang, E.W.: Second-order blind source separation based on multi-dimensional autocovariances. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp. 726–733. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30110-3_92 CrossRefGoogle Scholar
  6. 6.
    Hettmansperger, T.P., Randles, R.H.: A practical affine equivariant multivariate median. Biometrika 89(4), 851–860 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Theis, F.J., Müller, N.S., Plant, C., Böhm, C.: Robust second-order source separation identifies experimental responses in biomedical imaging. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 466–473. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15995-4_58 CrossRefGoogle Scholar
  8. 8.
    Ilmonen, P., Nordhausen, K., Oja, H., Ollila, E.: A new performance index for ICA: properties, computation and asymptotic analysis. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 229–236. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15995-4_29 CrossRefGoogle Scholar
  9. 9.
    Lietzén, N., Nordhausen, K., Ilmonen, P.: Minimum distance index for complex valued ICA. Stat. Prob. Lett. 118, 100–106 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Haining, R.: Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  11. 11.
    Schabenberger, O., Gotway, C.A.: Statistical Methods for Spatial Data Analysis. CRC Press, Boca Ranton (2005)zbMATHGoogle Scholar
  12. 12.
    Nordhausen, K., Oja, H., Filzmoser, P., Reimann, C.: Blind source separation for spatially correlated compositional data. Math. Geosci. 47, 753–770 (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto University School of ScienceAaltoFinland
  2. 2.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  3. 3.School of Health SciencesUniversity of TampereTampereFinland

Personalised recommendations