Advertisement

Audio Zoom for Smartphones Based on Multiple Adaptive Beamformers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10169)

Abstract

Some recent smartphones have offered the so-called audio zoom feature which allows to focus sound capture in the front direction while attenuating progressively surrounding sounds along with video zoom. This paper proposes a complete implementation of such function involving two major steps. First, targeted sound source is extracted by a novel approach that combines multiple adaptive beamformers having different look directions with a post-processing algorithm. Second, spatial zooming effect is created by leveraging the microphone signals and the enhanced target source. Subjective test with real-world audio recordings using a mock-up simulating an usual shape of the smartphone confirms the rich user experience obtained by the proposed system.

Keywords

Audio zoom on smartphone Sound capture Robust adaptive beamformer Post-processing 

References

  1. 1.
    Avendano, C., Solbach, L.: Audio zoom. US Patent Submitted 20 110 129 095A1 (2011). http://www.google.com/patents/US20110129095
  2. 2.
    Lee, K., Song, H., Lee, Y., Son, Y., Kim, J.: Mobile terminal and audio zooming method thereof. US Patent Submitted 20 130 342 730A1 (2013). http://www.google.com/patents/US20130342730
  3. 3.
    Veen, B.V., Buckley, K.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)CrossRefGoogle Scholar
  4. 4.
    Li, J., Stoica, P.: Robust Adaptive Beamforming. Wiley, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Makino, S., Lee, T.-W., Sawada, H.: Blind Speech Separation. Springer, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Vincent, E., Araki, S., Theis, F., Nolte, G., Bofill, P., Sawada, H., Ozerov, A., Gowreesunker, V., Lutter, D., Duong, N.Q.K.: The signal separation campaign (2007–2010): achievements and remaining challenges. Sig. Process. 92, 1928–1936 (2012)CrossRefGoogle Scholar
  7. 7.
    Duong, N.Q.K., Vincent, E., Gribonval, R.: Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process. 18(7), 1830–1840 (2010)CrossRefGoogle Scholar
  8. 8.
    Thiemann, J., Vincent, E.: An experimental comparison of source separation and beamforming techniques for microphone array signal enhancement. In: Proceedings of International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–5 (2013)Google Scholar
  9. 9.
    Bitzer, J., Simmer, K.U.: Superdirective microphone arrays. In: Brandstein, M., Ward, D. (eds.) Microphone Arrays. Digital Signal Processing, pp. 19–38. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Gu, Y., Leshem, A.: Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Sig. Process. 60(7), 3881–3885 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Takada, S., Kanba, S., Ogawa, T., Akagiri, K., Kobayashi, T.: Sound source separation using null-beamforming and spectral subtraction for mobile devices. In: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 30–33 (2007)Google Scholar
  12. 12.
    Bianchi, L., D’Amelio, F., Antonacci, F., Sarti, A., Tubaro, S.: A plenacoustic approach to acoustic signal extraction. In: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2005)Google Scholar
  13. 13.
    Markovich, S., Gannot, S., Cohen, I.: Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfereing speech signals. IEEE Trans. Audio Speech Lang. Process. 17(6), 1071–1086 (2009)CrossRefGoogle Scholar
  14. 14.
    Loesch, B., Yang, B.: Online blind source separation based on time-frequency sparseness. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 117–120 (2009)Google Scholar
  15. 15.
    Masnadi-Shirazi, A., Rao, B.D.: Separation and tracking of multiple speakers in a reverberant environment using a multiple model particle filter glimpsing method. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2516–2519 (2011)Google Scholar
  16. 16.
    Mestre, X., Lagunas, M.: On diagonal loading for minimum variance beamformers. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 459–462 (2003)Google Scholar
  17. 17.
    Zelinski, R.: A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2578–2581 (1998)Google Scholar
  18. 18.
    McCowan, I.A., Bourlard, H.: Microphone array post-filter for diffuse noise field. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1905–1908 (2002)Google Scholar
  19. 19.
    Duong, N.Q.K., Vincent, E., Gribonval, R.: Spatial location priors for gaussian model based reverberant audio source separation. EURASIP J. Adv. Sig. Process. 1, 1–11 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.TechnicolorCesson SévignéFrance
  2. 2.3D Sound LabsCesson SévignéFrance
  3. 3.Altran TechnologiesSaint-Jacques-de-la-LandeFrance

Personalised recommendations