Use of Global Satellite Altimeter and Drifter Data for Ocean Current Resource Characterization



In this chapter, a general overview and characterization of ocean current resources for potential power generation in the global oceans are presented. They are based on analysis of two relatively long data sets of surface drifter-observed mixed-layer current and the satellite altimeter-derived surface geostrophic current. Spatial and temporal variations of the four most prominent western boundary currents—the Kuroshio, Mindanao, Gulf Stream, and Agulhas currents—and their available mean undisturbed ocean power densities are discussed. Several potential sites for ocean current power generation in the North Pacific , South China Sea, and Oceania are identified based on a criterion formulated by combining the frequency with which the ocean currents occur, the magnitudes of their speed, the water depths at which they occur, and their distances from the shore.


Ocean current resource Drifter Satellite altimeter Kuroshio Mindanao current North Pacific Power density 



This research was completed with grants from the Ministry of Science and Technology of Taiwan, the Republic of China (MOST 104-2611-M-10-008). Peter C. Chu was supported by the Naval Oceanographic Office. We are grateful for the comments of anonymous reviewers. We thank Luca Centurioni of Scripps Institution of Oceanography for providing drifter data.


  1. Bahaj, A. S. (2011). Generating electricity from the oceans. Renewable and Sustainable Energy Reviews, 15, 3399–3416.CrossRefGoogle Scholar
  2. Bryden, H., Beal, L. M., & Duncan, L. M. (2005). Structure and Transport of the Agulhas current and its temporal variability. Journal of Oceanography, 61, 479–492.CrossRefGoogle Scholar
  3. Centurioni, L. R., Niller, P. P., & Lee, D.-K. (2004). Observations of inflow of Philippine sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34, 113–121.CrossRefGoogle Scholar
  4. Chang, Y.-C., Tseng, R.-S., & Centurioni, L. R. (2010). Typhoon-induced strong surface flows in the Taiwan Strait and Pacific. Journal of Oceanography, 66, 175–182.CrossRefGoogle Scholar
  5. Chang, Y.-C., Chen, G.-Y., Tseng, R.-S., Centurioni, L. R., & Chu, P. C. (2012). Observed near-surface currents under high wind speeds. Journal Geophysical Research, 117, C11026. doi: 10.1029/2012JC007996.Google Scholar
  6. Chang, Y.-C., Tseng, R.-S., Chen, G.-Y., Chu, P. C., & Shen, Y.-T. (2013). Ship routing utilizing strong ocean currents. Journal of Navigation, 66, 825–835.CrossRefGoogle Scholar
  7. Chang, Y.-C., Chu, P. C., Tseng, R.-S., & Centurioni, L. R. (2014). Observed near-surface currents under four super typhoons. Journal of Marine Systems, 139, 311–319.CrossRefGoogle Scholar
  8. Chang, Y.-C., Tseng, R.-S., & Chu, P. C. (2015). Site selection of ocean current power generation from drifter measurements. Renewable Energy, 80, 737–745.CrossRefGoogle Scholar
  9. Chen, F. (2010). Kuroshio power plant development plan. Renewable and Sustainable Energy Reviews, 14, 2655–2668.CrossRefGoogle Scholar
  10. Chu, P. C. (2009). Statistical characteristics of the global surface current speeds obtained from satellite altimeter and scatterometer data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(1), 27–32.CrossRefGoogle Scholar
  11. Davidson, F. J. M., Allen, A., Brassington, G. B., Breivik, Ø, Daniel, P., Kamachi, M., et al. (2009). Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography, 22 (3), 176–181.Google Scholar
  12. Ducet, N., Le Traon, P.-Y., & Reverdin, G. (2000). Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal Geophysical Research, 105, 19477–19498.CrossRefGoogle Scholar
  13. Duerr, A. E. S., & Dhanak, M. R. (2012). An assessment of the hydrokinetic energy resource of the Florida Current. IEEE Journal of Oceanic Engineering, 37(2), 281–293.CrossRefGoogle Scholar
  14. Edenhofer, O., & Kalkuhl, M. (2011). When do increasing carbon taxes accelerate global warming? A note on the green paradox. Energy Policy, 39, 2208–2212.CrossRefGoogle Scholar
  15. Finkl, C. W., & Charlier, R. (2009). Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations. Renewable and Sustainable Energy Reviews, 13, 2597–2604.CrossRefGoogle Scholar
  16. Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefMATHGoogle Scholar
  17. Garrett, C., & Cummins, P. (2008). Limits to tidal current power. Renewable Energy, 33, 2485–2490.CrossRefGoogle Scholar
  18. Hanson, H. P., Skemp, S. H., Alsenas, G. M., & Coley, C. E. (2010). Power from the Florida Current a new perspective on an old vision. Bulletin of the American Meteorological Society, 91, 861–866.CrossRefGoogle Scholar
  19. Hsin, Y.-C., Qiu, B., Chiang, T.-L., & Wu, C.-R. (2013). Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. Journal Geophysical Research, 118, 4305–4316.Google Scholar
  20. Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T., & Yang, Y. (2001). The Kuroshio east of Taiwan: Moored transport observations from WOCE PCM-1 array. Journal of Physical Oceanography, 31, 1031–1053.CrossRefGoogle Scholar
  21. Kashino, Y., Espana, N., Syamsudin, F., Richards, K. J., Jensen, T., Dutrieux, P., et al. (2009). Observations of the North Equatorial Current, Mindanao Current, and the Kuroshio Current system during the 2006/07 El Nino and 2007/08 La Nina. Journal of Oceanography, 65, 325–333.CrossRefGoogle Scholar
  22. Kawabe, M. (2005). Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. Journal of Oceanography, 61, 529–537.CrossRefGoogle Scholar
  23. Le Traon, P.-Y., Dibarboure, G., & Ducet, N. (2001). Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. Journal of Atmospheric and Oceanic Technology, 18, 1277–1288.CrossRefGoogle Scholar
  24. Lissaman, P. B. S. (1979). The Coriolis program. Oceanus, 22, 23–28.Google Scholar
  25. Lukas, R., Firing, E., Hacker, P., Richardson, P. L., Collins, C. A., Fine, R., et al. (1991). Observations of the Mindanao current during the western equatorial Pacific Ocean circulation study. Journal Geophysical Research, 96(C4), 7089–7104.CrossRefGoogle Scholar
  26. Lumpkin, R., & Johnson, G. C. (2013). Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans, 118(6), 2992–3006.Google Scholar
  27. Lutjeharms, J. R. E. (2006). The Agulhas Current (1st ed.). Berlin: Springer.Google Scholar
  28. Maximenko, N., Niiler, P., Centurioni, L., Rio, M.-H., Melnichenko, O., Chambers, D., et al. (2009). Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. Journal of Atmospheric and Oceanic Technology, 26(9), 1910–1919.CrossRefGoogle Scholar
  29. Munk, W. H. (1950). On the wind-driven ocean circulation. Journal of Meteorology, 7, 79–93.CrossRefGoogle Scholar
  30. Niiler, P. P. (2001). The world ocean surface circulation. International Geophysics, 77, 193–204. In G. Siedler, J. Church & J. Gould (Eds.), Ocean circulation and climate: Observing and modeling the global ocean. San Diego, Calif: Academic Press.Google Scholar
  31. Niiler, P. P., Sybrandy, A. S., Bi, K., Poulain, P. M., & Bitterman, D. (1995). Measurements of the water following capability of holey-sock and TRISTAR drifters. Deep-Sea Research, 42A, 1951–1964.CrossRefGoogle Scholar
  32. Pascual, A., Faugere, Y., Larnicol, G., & Le Traon, P.-Y. (2006). Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33, L02611. doi: 10.1029/2005GL024633.CrossRefGoogle Scholar
  33. Ponta, F. L., & Jacovkis, P. M. (2008). Marine-current power generation by diffuser-augmented floating hydro-turbines. Renewable Energy, 33(4), 665–673.CrossRefGoogle Scholar
  34. Poulain, P.-M., Gerin, R., Mauri, E., & Pennel, R. (2009). Wind effects on drogued and undrogued drifters in the eastern Mediterranean. Journal of Atmospheric and Oceanic Technology, 26, 1144–1156. doi: 10.1175/2008JTECHO618.1.CrossRefGoogle Scholar
  35. Qiu, B., & Chen, S. (2006). Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. Journal of Physical Oceanography, 36(9), 1751. doi: 10.1175/JPO2943.1.
  36. Rio, M.-H., & Hernandez, F. (2004). A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. Journal Geophysical Research, 109, C12032. doi: 10.1029/2003JC002226.CrossRefGoogle Scholar
  37. Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Transactions American Geophysical Union, 29, 202–206.CrossRefGoogle Scholar
  38. Stramma, L., & Lutjeharms, J. (1997). The flow field of the subtropical gyre of the South Indian Ocean. Journal Geophysical Research, 99, 14053–14070.Google Scholar
  39. Twidell, J., & Weir, A. (2006). Renewable energy resources. Taylor and Francis.Google Scholar
  40. VanZwieten Jr., J. H., Duerr, A. E. S., Alsenas, G. M., & Hanson, H. P. (2013). Global ocean current energy assessment: An initial look. In Proceedings of the 1st Marine Energy Technology Symposium (METS13), April 10–11, Washington D.C.Google Scholar
  41. VanZwieten, J. H., Meyer, I., & Alsenas, G. M. (2014). Evaluation of HYCOM as a tool for ocean current energy assessment. In Proceedings of the 2nd Marine Energy Technology Symposium (METS14) April 15–18, 2014, Seattle, WA.Google Scholar
  42. Yang, X., Haas, K. A., & Fritz, H. M. (2014). Evaluating the potential for energy extraction from turbines in the gulf stream system. Renewable Energy, 12–21.Google Scholar
  43. Yang, X., Haas, K. A., Fritz, H. M., French, S. P., Shi, X., Neary, V. S., et al. (2015a). National geodatabase of ocean current power resource in USA. Renewable and Sustainable Energy Reviews, 44, 496–507.CrossRefGoogle Scholar
  44. Yang, Y. J., Jan, S., Chang, M.-H., Wang, J., Mensah, V., Kuo, T.-H., et al. (2015b). Mean structure and fluctuations of the Kuroshio east of Taiwan from in-situ and remote observations. Oceanography, 28(4), 74–83.CrossRefGoogle Scholar
  45. Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of OceanographyNational Sun Yat-sen UniversityKaohsiungTaiwan
  2. 2.Department of Marine Biotechnology and ResourcesNational Sun Yat-sen UniversityKaohsiungTaiwan
  3. 3.Department of OceanographyNaval Postgraduate SchoolMontereyUSA

Personalised recommendations