Skip to main content

Wave-Tide Interactions in Ocean Renewable Energy

  • Chapter
  • First Online:
Marine Renewable Energy

Abstract

Some regions of the world concurrently experience a high wave and a high tidal energy resource. These regions include the seas of the northwest European continental shelf, the Gulf of Alaska, New Zealand, northwest Australia, and the Atlantic seaboard of Argentina. Due to the interaction of waves and tides, special consideration needs to be given to resource characterization of marine renewable energy schemes developed in such regions. Waves have been shown to reduce the tidal current, which, because tidal-stream power is proportional to the cube of velocity, reduce the available energy resource. Further, waves can reduce the tidal-stream energy resource during extreme wave periods when ocean renewable devices may not operate. Waves should be also considered in the design and resilience of tidal-stream energy devices. Hence, waves can have a critical effect on the planning, operation, maintenance, and resource assessment of tidal energy sites. Conversely, tides can significantly alter wave properties through various wave-current interaction mechanisms. For example, tidal currents can alter wave steepness which is an important consideration in the design of marine energy mooring. Wave power, in general, is proportional to the wave group velocity and the wave height squared, both of which change in presence of tidal currents. Therefore, resource assessments of such regions should account for the way that one marine energy resource affects another at a variety of timescales from semidiurnal, spring-neap, to seasonal. Finally, wave-current interaction processes affect turbulence, and the dynamics of sediment transport; therefore, they should be considered when the impact of an energy device, or an array of such devices, on the environment is studied. This chapter introduces the basic concepts of wave-tide interaction in relation to the ocean renewable energy resource assessment. Various aspects of the marine renewable energy industry that are affected by wave-tide interactions , such as resource assessment and the influence of wave-tide interactions when characterizing the oceanographic site conditions, are discussed. Methods ranging from simplified analytical techniques to complex fully coupled wave-tide models are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some models use the Chezy coefficient, \(C_z\), which is related to drag coefficients as \(C_z=\sqrt{g/C_D}\) (Soulsby 1997).

References

  • ABPmer. (2008). Atlas of UK marine renewable energy resources, Technical report, Department for Business Enterprise & Regulatory Reform.

    Google Scholar 

  • Afgan, I., McNaughton, J., Rolfo, S., Apsley, D., Stallard, T., & Stansby, P. (2013). Turbulent flow and loading on a tidal stream turbine by LES and RANS. International Journal of Heat and Fluid Flow, 43, 96–108.

    Article  Google Scholar 

  • Bai, X., Avital, E., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energy, 63, 715–723.

    Article  Google Scholar 

  • Barbariol, F., Benetazzo, A., Carniel, S., & Sclavo, M. (2013). Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renewable Energy, 60, 462–471.

    Article  Google Scholar 

  • Barltrop, N., Varyani, K., Grant, A., Clelland, D., & Pham, X. (2007). Investigation into wave–current interactions in marine current turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 233–242.

    Google Scholar 

  • Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2008). The prediction of the hydrodynamic performance of marine current turbines. Renewable energy, 33(5), 1085–1096.

    Article  Google Scholar 

  • Blunden, L. S., & Bahaj, A. S. (2006). Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renewable Energy, 31(2), 121–132.

    Article  Google Scholar 

  • Booij, N., Haagsma, I., Holthuijsen, L., Kieftenburg, A., Ris, R., Van Der Westhuysen, A., & Zijlema, M. (2004). SWAN cycle III version 40.41 user manual (Vol. 115). Delft University of Technology.

    Google Scholar 

  • Brown, J. M., & Davies, A. G. (2009). Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Continental Shelf Research, 29(11), 1502–1514.

    Article  Google Scholar 

  • Burrows, R., Walkington, I., Yates, N., Hedges, T., Wolf, J., & Holt, J. (2009). The tidal range energy potential of the west coast of the United Kingdom. Applied Ocean Research, 31(4), 229–238.

    Article  Google Scholar 

  • Carr, D., Gill, L., & McNabola, A. (2016). Development of a high resolution wave climate modelling methodology for offshore, nearshore and onshore locations of interest. International Journal of Marine Energy, 16, 30–40.

    Article  Google Scholar 

  • Carrère, L., Lyard, F., Cancet, M., Guillot, A., & Roblou, L. (2012). FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry. In Proceedings of Meeting (Vol. 20).

    Google Scholar 

  • Castellucci, V., Waters, R., Eriksson, M., & Leijon, M. (2013). Tidal effect compensation system for point absorbing wave energy converters. Renewable energy, 51, 247–254.

    Article  Google Scholar 

  • Chawla, A., & Kirby, J. T. (2002). Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research: Oceans, 107(C7).

    Google Scholar 

  • Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, R., Cowles, G. W., et al. (2011). Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM. Journal of Geophysical Research: Oceans, 116(C12).

    Google Scholar 

  • Dalrymple, R. A., & Dean, R. G. (1991). Water wave mechanics for engineers and scientists. USA: World Scientific.

    Google Scholar 

  • Davies, A. G., Soulsby, R. L., & King, H. L. (1988). A numerical model of the combined wave and current bottom boundary layer. Journal of Geophysical Research: Oceans (1978–2012), 93(C1), 491–508.

    Google Scholar 

  • de Jesus Henriques, T. A., Hedges, T. S., Owen, I., & Poole, R. J. (2016). The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction. Energy, 102, 166–175.

    Google Scholar 

  • Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.

    Article  Google Scholar 

  • Draper, S., Adcock, T. A., Borthwick, A. G., & Houlsby, G. T. (2014). Estimate of the tidal stream power resource of the pentland firth. Renewable Energy, 63, 650–657.

    Article  Google Scholar 

  • Frost, C., Morris, C. E., Mason-Jones, A., O’Doherty, D. M., & O’Doherty, T. (2015). The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy, 78, 609–620.

    Article  Google Scholar 

  • Galloway, P. W., Myers, L. E., & Bahaj, A. S. (2014). Quantifying wave and yaw effects on a scale tidal stream turbine. Renewable energy, 63, 297–307.

    Article  Google Scholar 

  • Gaurier, B., Davies, P., Deuff, A., & Germain, G. (2013). Flume tank characterization of marine current turbine blade behaviour under current and wave loading. Renewable Energy, 59, 1–12.

    Article  Google Scholar 

  • Gleizon, P., & Woolf, D. (2013). Wave energy assessment in Scottish Seas. IN Proceedings of the 10th European Wave and Tidal Energy Conferences, Aalborg, Denmark.

    Google Scholar 

  • Gonzalez-Santamaria, R., Zou, Q.-P., & Pan, S. (2015). Impacts of a wave farm on waves, currents and coastal morphology in South West England. Estuaries and Coasts, 38(1), 159–172.

    Article  Google Scholar 

  • González-Santamaría, R., Zou, Q., Pan, S., & Padilla-Hernandez, R. (2010). Modelling wave-tide interactions at a wave farm in the southwest of England. Coastal Engineering, 2.

    Google Scholar 

  • Guillou, N., Chapalain, G., & Neill, S. P. (2016). The influence of waves on the tidal kinetic energy resource at a tidal stream energy site. Applied Energy, 180, 402–415.

    Article  Google Scholar 

  • Hashemi, M. R., & Neill, S. P. (2014). The role of tides in shelf-scale simulations of the wave energy resource. Renewable Energy, 69, 300–310.

    Article  Google Scholar 

  • Hashemi, M. R., Grilli, S. T., & Neill, S. P. (2016). A simplified method to estimate tidal current effects on the ocean wave power resource. Renewable Energy, 96, 257–269.

    Article  Google Scholar 

  • Hashemi, M. R., Neill, S. P., & Davies, A. G. (2015a). A coupled tide-wave model for the NW European shelf seas. Geophysical & Astrophysical Fluid Dynamics, 109(3), 234–253.

    Google Scholar 

  • Hashemi, M. R., Neill, S. P., Robins, P. E., Davies, A. G., & Lewis, M. J. (2015b). Effect of waves on the tidal energy resource at a planned tidal stream array. Renewable Energy, 75, 626–639.

    Google Scholar 

  • Hashemi, M. R., Neill, S. P., & Davies, A. G. (2012). A numerical study of wave and current fields around Ramsey Island—Tidal energy resource assessment. In XIXth TELEMAC-MASCARET User Conference. Oxford: United Kingdom.

    Google Scholar 

  • Hervouet, J.-M. (2000). TELEMAC modelling system: An overview. Hydrological Processes, 14(13), 2209–2210.

    Article  Google Scholar 

  • Holst, M. A., Dahlhaug, O. G., & Faudot, C. (2015). Cfd analysis of wave-induced loads on tidal turbine blades. IEEE Journal of Oceanic Engineering, 40(3), 506–521.

    Article  Google Scholar 

  • Johanning, L., Smith, G. H., & Wolfram, J. (2007). Measurements of static and dynamic mooring line damping and their importance for floating wec devices. Ocean Engineering, 34(14), 1918–1934.

    Article  Google Scholar 

  • Karsten, R. H., McMillan, J., Lickley, M., & Haynes, R. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.

    Google Scholar 

  • Khan, M., Bhuyan, G., Iqbal, M., & Quaicoe, J. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10), 1823–1835.

    Article  Google Scholar 

  • Kramer, S. C., & Piggott, M. D. (2016). A correction to the enhanced bottom drag parameterisation of tidal turbines. Renewable Energy, 92, 385–396.

    Article  Google Scholar 

  • Krauss, T. P., Shure, L., & Little, J. N. (1994). Signal processing toolbox for use with MATLAB.

    Google Scholar 

  • Lewis, M., Neill, S., Robins, P., & Hashemi, M. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.

    Article  Google Scholar 

  • Lewis, M., Neill, S., Hashemi, M., & Reza, M. (2014). Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, 495–508.

    Article  Google Scholar 

  • Liu, H.-W., Ma, S., Li, W., Gu, H.-G., Lin, Y.-G., & Sun, X.-J. (2011). A review on the development of tidal current energy in China. Renewable and Sustainable Energy Reviews, 15(2), 1141–1146.

    Article  Google Scholar 

  • Longuet-Higgins, M. S., & Stewart, R. (1960). Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8(04), 565–583.

    Article  MathSciNet  MATH  Google Scholar 

  • López, I., Pereiras, B., Castro, F., & Iglesias, G. (2015). Performance of owc wave energy converters: Influence of turbine damping and tidal variability. International Journal of Energy Research, 39(4), 472–483.

    Article  Google Scholar 

  • Luznik, L., Flack, K. A., Lust, E. E., & Taylor, K. (2013). The effect of surface waves on the performance characteristics of a model tidal turbine. Renewable energy, 58, 108–114.

    Article  Google Scholar 

  • Marks, K., & Smith, W. (2006). An evaluation of publicly available global bathymetry grids. Marine Geophysical Researches, 27(1), 19–34.

    Article  Google Scholar 

  • Mason-Jones, A., O’Doherty, D. M., Morris, C. E., & O’Doherty, T. (2013). Influence of a velocity profile & support structure on tidal stream turbine performance. Renewable Energy, 52, 23–30.

    Article  Google Scholar 

  • Moreira, R., & Peregrine, D. (2012). Nonlinear interactions between deep-water waves and currents. Journal of Fluid Mechanics, 691, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Mueller, M., & Wallace, R. (2008). Enabling science and technology for marine renewable energy. Energy Policy, 36(12), 4376–4382.

    Article  Google Scholar 

  • Myers, L., & Bahaj, A. (2010). Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Engineering, 37(2), 218–227.

    Article  Google Scholar 

  • Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.

    Article  Google Scholar 

  • Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34(12), 2803–2812.

    Article  Google Scholar 

  • Neill, S. P., Lewis, M. J., Hashemi, M. R., Slater, E., Lawrence, J., & Spall, S. A. (2014). Inter-annual and inter-seasonal variability of the orkney wave power resource. Applied Energy, 132, 339–348.

    Article  Google Scholar 

  • O’Connor, M., Lewis, T., & Dalton, G. (2013). Weather window analysis of irish west coast wave data with relevance to operations & maintenance of marine renewables. Renewable energy, 52, 57–66.

    Article  Google Scholar 

  • Osorio, A., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in colombia. Renewable and Sustainable Energy Reviews, 53, 966–977.

    Article  Google Scholar 

  • Pugh, D. T. (1996). Tides, surges and mean sea-level (reprinted with corrections). UK: Wiley.

    Google Scholar 

  • Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W., & Lai, Z. (2009). An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Modelling, 28(1), 153–166.

    Article  Google Scholar 

  • Ramos, V., Carballo, R., Álvarez, M., Sánchez, M., & Iglesias, G. (2013). Assessment of the impacts of tidal stream energy through high-resolution numerical modeling. Energy, 61, 541–554.

    Article  Google Scholar 

  • Robins, P. E., Neill, S. P., & Lewis, M. J. (2014). Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renewable Energy, 72, 311–321.

    Article  Google Scholar 

  • Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterising the spatial and temporal variability of the tidal-stream energy resource over the Northwest European shelf seas. Applied Energy, 147, 510–522.

    Article  Google Scholar 

  • Rourke, F. O., Boyle, F., & Reynolds, A. (2010). Marine current energy devices: Current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14(3), 1026–1036.

    Article  Google Scholar 

  • Sabatino, A. D., McCaig, C., Murray, R. O., & Heath, M. R. (2015). Modelling wave-current interactions off the east coast of scotland. Ocean Science Discussions, 12, 3099–3142.

    Article  Google Scholar 

  • Saruwatari, A., Ingram, D. M., & Cradden, L. (2013). Wave-current interaction effects on marine energy converters. Ocean Engineering, 73, 106–118.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404.

    Article  Google Scholar 

  • Smith, H. C., Haverson, D., & Smith, G. H. (2013). A wave energy resource assessment case study: Review, analysis and lessons learnt. Renewable energy, 60, 510–521.

    Article  Google Scholar 

  • Soulsby, R. L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R. R., & Thomas, G. P. (1993). Wave-current interaction within and outside the bottom boundary layer. Coastal Engineering, 21(1), 41–69.

    Article  Google Scholar 

  • Soulsby, R. (1997). Dynamics of marine sands: A manual for practical applications. UK: Thomas Telford.

    Google Scholar 

  • Soulsby, R. (2006). Simplified calculation of wave orbital velocities.

    Google Scholar 

  • Soulsby, R., & Clarke, S. (2005) Bed shear-stresses under combined waves and currents on smooth and rough beds. HR Wallingford, Report TR137.

    Google Scholar 

  • Tambroni, N., Blondeaux, P., & Vittori, G. (2015). A simple model of wave-current interaction. Journal of Fluid Mechanics, 775, 328–348.

    Article  MathSciNet  Google Scholar 

  • Tatum, S., Allmark, M., Frost, C., O’Doherty, D., Mason-Jones, A., & O’Doherty, T. (2016). Cfd modelling of a tidal stream turbine subjected to profiled flow and surface gravity waves. International Journal of Marine Energy.

    Google Scholar 

  • Van Loan, C. (1992). Computational frameworks for the fast Fourier transform (Vol. 10). USA: SIAM.

    Book  MATH  Google Scholar 

  • Van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. i: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering, 133(6), 649–667.

    Google Scholar 

  • Venugopal, V., & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (pp. 09–090100909010). American Society of Mechanical Engineers

    Google Scholar 

  • Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105–113.

    Article  Google Scholar 

  • Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230–244.

    Article  Google Scholar 

  • Whitham, G. B. (2011). Linear and nonlinear waves (Vol. 42). USA: Wiley.

    MATH  Google Scholar 

  • Wiberg, P. L., & Sherwood, C. R. (2008). Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers & Geosciences, 34(10), 1243–1262.

    Article  Google Scholar 

  • Wolf, J., & Prandle, D. (1999). Some observations of wave-current interaction. Coastal Engineering, 37(3), 471–485.

    Article  Google Scholar 

  • Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.

    Article  Google Scholar 

Download references

Acknowledgements

M. Lewis wishes to acknowledge the support of the S\(\hat{e}\)r Cymru National Research Network for Low Carbon, Energy and the Environment (NRN-LCEE) project QUOTIENT, the SEACAMS research project (Sustainable Expansion of the Applied Coastal and Marine Sectors: Grant Number 80366), the Welsh Government, the Higher Education Funding Council for Wales, the Welsh European Funding Office, and the European Regional Development Fund Convergence Programme. Thanks to Simon Neill (Bangor University) and Philippe Gleizon (University of the Highlands and Islands) for providing the wave buoy data at Pentland Firth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashemi, M.R., Lewis, M. (2017). Wave-Tide Interactions in Ocean Renewable Energy. In: Yang, Z., Copping, A. (eds) Marine Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-53536-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53536-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53534-0

  • Online ISBN: 978-3-319-53536-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics