Wave-Tide Interactions in Ocean Renewable Energy

  • M. Reza Hashemi
  • Matt Lewis


Some regions of the world concurrently experience a high wave and a high tidal energy resource. These regions include the seas of the northwest European continental shelf, the Gulf of Alaska, New Zealand, northwest Australia, and the Atlantic seaboard of Argentina. Due to the interaction of waves and tides, special consideration needs to be given to resource characterization of marine renewable energy schemes developed in such regions. Waves have been shown to reduce the tidal current, which, because tidal-stream power is proportional to the cube of velocity, reduce the available energy resource. Further, waves can reduce the tidal-stream energy resource during extreme wave periods when ocean renewable devices may not operate. Waves should be also considered in the design and resilience of tidal-stream energy devices. Hence, waves can have a critical effect on the planning, operation, maintenance, and resource assessment of tidal energy sites. Conversely, tides can significantly alter wave properties through various wave-current interaction mechanisms. For example, tidal currents can alter wave steepness which is an important consideration in the design of marine energy mooring. Wave power, in general, is proportional to the wave group velocity and the wave height squared, both of which change in presence of tidal currents. Therefore, resource assessments of such regions should account for the way that one marine energy resource affects another at a variety of timescales from semidiurnal, spring-neap, to seasonal. Finally, wave-current interaction processes affect turbulence, and the dynamics of sediment transport; therefore, they should be considered when the impact of an energy device, or an array of such devices, on the environment is studied. This chapter introduces the basic concepts of wave-tide interaction in relation to the ocean renewable energy resource assessment. Various aspects of the marine renewable energy industry that are affected by wave-tide interactions , such as resource assessment and the influence of wave-tide interactions when characterizing the oceanographic site conditions, are discussed. Methods ranging from simplified analytical techniques to complex fully coupled wave-tide models are explained.


Wave-current interaction Wave-tide interaction Coupled models Wave radiation stress Enhanced bottom friction Doppler shift 



M. Lewis wishes to acknowledge the support of the S\(\hat{e}\)r Cymru National Research Network for Low Carbon, Energy and the Environment (NRN-LCEE) project QUOTIENT, the SEACAMS research project (Sustainable Expansion of the Applied Coastal and Marine Sectors: Grant Number 80366), the Welsh Government, the Higher Education Funding Council for Wales, the Welsh European Funding Office, and the European Regional Development Fund Convergence Programme. Thanks to Simon Neill (Bangor University) and Philippe Gleizon (University of the Highlands and Islands) for providing the wave buoy data at Pentland Firth.


  1. ABPmer. (2008). Atlas of UK marine renewable energy resources, Technical report, Department for Business Enterprise & Regulatory Reform.Google Scholar
  2. Afgan, I., McNaughton, J., Rolfo, S., Apsley, D., Stallard, T., & Stansby, P. (2013). Turbulent flow and loading on a tidal stream turbine by LES and RANS. International Journal of Heat and Fluid Flow, 43, 96–108.CrossRefGoogle Scholar
  3. Bai, X., Avital, E., Munjiza, A., & Williams, J. (2014). Numerical simulation of a marine current turbine in free surface flow. Renewable Energy, 63, 715–723.CrossRefGoogle Scholar
  4. Barbariol, F., Benetazzo, A., Carniel, S., & Sclavo, M. (2013). Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renewable Energy, 60, 462–471.CrossRefGoogle Scholar
  5. Barltrop, N., Varyani, K., Grant, A., Clelland, D., & Pham, X. (2007). Investigation into wave–current interactions in marine current turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 233–242.Google Scholar
  6. Batten, W., Bahaj, A., Molland, A., & Chaplin, J. (2008). The prediction of the hydrodynamic performance of marine current turbines. Renewable energy, 33(5), 1085–1096.CrossRefGoogle Scholar
  7. Blunden, L. S., & Bahaj, A. S. (2006). Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renewable Energy, 31(2), 121–132.CrossRefGoogle Scholar
  8. Booij, N., Haagsma, I., Holthuijsen, L., Kieftenburg, A., Ris, R., Van Der Westhuysen, A., & Zijlema, M. (2004). SWAN cycle III version 40.41 user manual (Vol. 115). Delft University of Technology.Google Scholar
  9. Brown, J. M., & Davies, A. G. (2009). Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Continental Shelf Research, 29(11), 1502–1514.CrossRefGoogle Scholar
  10. Burrows, R., Walkington, I., Yates, N., Hedges, T., Wolf, J., & Holt, J. (2009). The tidal range energy potential of the west coast of the United Kingdom. Applied Ocean Research, 31(4), 229–238.CrossRefGoogle Scholar
  11. Carr, D., Gill, L., & McNabola, A. (2016). Development of a high resolution wave climate modelling methodology for offshore, nearshore and onshore locations of interest. International Journal of Marine Energy, 16, 30–40.CrossRefGoogle Scholar
  12. Carrère, L., Lyard, F., Cancet, M., Guillot, A., & Roblou, L. (2012). FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry. In Proceedings of Meeting (Vol. 20).Google Scholar
  13. Castellucci, V., Waters, R., Eriksson, M., & Leijon, M. (2013). Tidal effect compensation system for point absorbing wave energy converters. Renewable energy, 51, 247–254.CrossRefGoogle Scholar
  14. Chawla, A., & Kirby, J. T. (2002). Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research: Oceans, 107(C7).Google Scholar
  15. Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, R., Cowles, G. W., et al. (2011). Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM. Journal of Geophysical Research: Oceans, 116(C12).Google Scholar
  16. Dalrymple, R. A., & Dean, R. G. (1991). Water wave mechanics for engineers and scientists. USA: World Scientific.Google Scholar
  17. Davies, A. G., Soulsby, R. L., & King, H. L. (1988). A numerical model of the combined wave and current bottom boundary layer. Journal of Geophysical Research: Oceans (1978–2012), 93(C1), 491–508.Google Scholar
  18. de Jesus Henriques, T. A., Hedges, T. S., Owen, I., & Poole, R. J. (2016). The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction. Energy, 102, 166–175.Google Scholar
  19. Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.CrossRefGoogle Scholar
  20. Draper, S., Adcock, T. A., Borthwick, A. G., & Houlsby, G. T. (2014). Estimate of the tidal stream power resource of the pentland firth. Renewable Energy, 63, 650–657.CrossRefGoogle Scholar
  21. Frost, C., Morris, C. E., Mason-Jones, A., O’Doherty, D. M., & O’Doherty, T. (2015). The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy, 78, 609–620.CrossRefGoogle Scholar
  22. Galloway, P. W., Myers, L. E., & Bahaj, A. S. (2014). Quantifying wave and yaw effects on a scale tidal stream turbine. Renewable energy, 63, 297–307.CrossRefGoogle Scholar
  23. Gaurier, B., Davies, P., Deuff, A., & Germain, G. (2013). Flume tank characterization of marine current turbine blade behaviour under current and wave loading. Renewable Energy, 59, 1–12.CrossRefGoogle Scholar
  24. Gleizon, P., & Woolf, D. (2013). Wave energy assessment in Scottish Seas. IN Proceedings of the 10th European Wave and Tidal Energy Conferences, Aalborg, Denmark.Google Scholar
  25. Gonzalez-Santamaria, R., Zou, Q.-P., & Pan, S. (2015). Impacts of a wave farm on waves, currents and coastal morphology in South West England. Estuaries and Coasts, 38(1), 159–172.CrossRefGoogle Scholar
  26. González-Santamaría, R., Zou, Q., Pan, S., & Padilla-Hernandez, R. (2010). Modelling wave-tide interactions at a wave farm in the southwest of England. Coastal Engineering, 2.Google Scholar
  27. Guillou, N., Chapalain, G., & Neill, S. P. (2016). The influence of waves on the tidal kinetic energy resource at a tidal stream energy site. Applied Energy, 180, 402–415.CrossRefGoogle Scholar
  28. Hashemi, M. R., & Neill, S. P. (2014). The role of tides in shelf-scale simulations of the wave energy resource. Renewable Energy, 69, 300–310.CrossRefGoogle Scholar
  29. Hashemi, M. R., Grilli, S. T., & Neill, S. P. (2016). A simplified method to estimate tidal current effects on the ocean wave power resource. Renewable Energy, 96, 257–269.CrossRefGoogle Scholar
  30. Hashemi, M. R., Neill, S. P., & Davies, A. G. (2015a). A coupled tide-wave model for the NW European shelf seas. Geophysical & Astrophysical Fluid Dynamics, 109(3), 234–253.Google Scholar
  31. Hashemi, M. R., Neill, S. P., Robins, P. E., Davies, A. G., & Lewis, M. J. (2015b). Effect of waves on the tidal energy resource at a planned tidal stream array. Renewable Energy, 75, 626–639.Google Scholar
  32. Hashemi, M. R., Neill, S. P., & Davies, A. G. (2012). A numerical study of wave and current fields around Ramsey Island—Tidal energy resource assessment. In XIXth TELEMAC-MASCARET User Conference. Oxford: United Kingdom.Google Scholar
  33. Hervouet, J.-M. (2000). TELEMAC modelling system: An overview. Hydrological Processes, 14(13), 2209–2210.CrossRefGoogle Scholar
  34. Holst, M. A., Dahlhaug, O. G., & Faudot, C. (2015). Cfd analysis of wave-induced loads on tidal turbine blades. IEEE Journal of Oceanic Engineering, 40(3), 506–521.CrossRefGoogle Scholar
  35. Johanning, L., Smith, G. H., & Wolfram, J. (2007). Measurements of static and dynamic mooring line damping and their importance for floating wec devices. Ocean Engineering, 34(14), 1918–1934.CrossRefGoogle Scholar
  36. Karsten, R. H., McMillan, J., Lickley, M., & Haynes, R. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.Google Scholar
  37. Khan, M., Bhuyan, G., Iqbal, M., & Quaicoe, J. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10), 1823–1835.CrossRefGoogle Scholar
  38. Kramer, S. C., & Piggott, M. D. (2016). A correction to the enhanced bottom drag parameterisation of tidal turbines. Renewable Energy, 92, 385–396.CrossRefGoogle Scholar
  39. Krauss, T. P., Shure, L., & Little, J. N. (1994). Signal processing toolbox for use with MATLAB.Google Scholar
  40. Lewis, M., Neill, S., Robins, P., & Hashemi, M. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.CrossRefGoogle Scholar
  41. Lewis, M., Neill, S., Hashemi, M., & Reza, M. (2014). Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, 495–508.CrossRefGoogle Scholar
  42. Liu, H.-W., Ma, S., Li, W., Gu, H.-G., Lin, Y.-G., & Sun, X.-J. (2011). A review on the development of tidal current energy in China. Renewable and Sustainable Energy Reviews, 15(2), 1141–1146.CrossRefGoogle Scholar
  43. Longuet-Higgins, M. S., & Stewart, R. (1960). Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8(04), 565–583.MathSciNetCrossRefMATHGoogle Scholar
  44. López, I., Pereiras, B., Castro, F., & Iglesias, G. (2015). Performance of owc wave energy converters: Influence of turbine damping and tidal variability. International Journal of Energy Research, 39(4), 472–483.CrossRefGoogle Scholar
  45. Luznik, L., Flack, K. A., Lust, E. E., & Taylor, K. (2013). The effect of surface waves on the performance characteristics of a model tidal turbine. Renewable energy, 58, 108–114.CrossRefGoogle Scholar
  46. Marks, K., & Smith, W. (2006). An evaluation of publicly available global bathymetry grids. Marine Geophysical Researches, 27(1), 19–34.CrossRefGoogle Scholar
  47. Mason-Jones, A., O’Doherty, D. M., Morris, C. E., & O’Doherty, T. (2013). Influence of a velocity profile & support structure on tidal stream turbine performance. Renewable Energy, 52, 23–30.CrossRefGoogle Scholar
  48. Moreira, R., & Peregrine, D. (2012). Nonlinear interactions between deep-water waves and currents. Journal of Fluid Mechanics, 691, 1–25.MathSciNetCrossRefMATHGoogle Scholar
  49. Mueller, M., & Wallace, R. (2008). Enabling science and technology for marine renewable energy. Energy Policy, 36(12), 4376–4382.CrossRefGoogle Scholar
  50. Myers, L., & Bahaj, A. (2010). Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Engineering, 37(2), 218–227.CrossRefGoogle Scholar
  51. Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.CrossRefGoogle Scholar
  52. Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34(12), 2803–2812.CrossRefGoogle Scholar
  53. Neill, S. P., Lewis, M. J., Hashemi, M. R., Slater, E., Lawrence, J., & Spall, S. A. (2014). Inter-annual and inter-seasonal variability of the orkney wave power resource. Applied Energy, 132, 339–348.CrossRefGoogle Scholar
  54. O’Connor, M., Lewis, T., & Dalton, G. (2013). Weather window analysis of irish west coast wave data with relevance to operations & maintenance of marine renewables. Renewable energy, 52, 57–66.CrossRefGoogle Scholar
  55. Osorio, A., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in colombia. Renewable and Sustainable Energy Reviews, 53, 966–977.CrossRefGoogle Scholar
  56. Pugh, D. T. (1996). Tides, surges and mean sea-level (reprinted with corrections). UK: Wiley.Google Scholar
  57. Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W., & Lai, Z. (2009). An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Modelling, 28(1), 153–166.CrossRefGoogle Scholar
  58. Ramos, V., Carballo, R., Álvarez, M., Sánchez, M., & Iglesias, G. (2013). Assessment of the impacts of tidal stream energy through high-resolution numerical modeling. Energy, 61, 541–554.CrossRefGoogle Scholar
  59. Robins, P. E., Neill, S. P., & Lewis, M. J. (2014). Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renewable Energy, 72, 311–321.CrossRefGoogle Scholar
  60. Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterising the spatial and temporal variability of the tidal-stream energy resource over the Northwest European shelf seas. Applied Energy, 147, 510–522.CrossRefGoogle Scholar
  61. Rourke, F. O., Boyle, F., & Reynolds, A. (2010). Marine current energy devices: Current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14(3), 1026–1036.CrossRefGoogle Scholar
  62. Sabatino, A. D., McCaig, C., Murray, R. O., & Heath, M. R. (2015). Modelling wave-current interactions off the east coast of scotland. Ocean Science Discussions, 12, 3099–3142.CrossRefGoogle Scholar
  63. Saruwatari, A., Ingram, D. M., & Cradden, L. (2013). Wave-current interaction effects on marine energy converters. Ocean Engineering, 73, 106–118.CrossRefGoogle Scholar
  64. Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404.CrossRefGoogle Scholar
  65. Smith, H. C., Haverson, D., & Smith, G. H. (2013). A wave energy resource assessment case study: Review, analysis and lessons learnt. Renewable energy, 60, 510–521.CrossRefGoogle Scholar
  66. Soulsby, R. L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R. R., & Thomas, G. P. (1993). Wave-current interaction within and outside the bottom boundary layer. Coastal Engineering, 21(1), 41–69.CrossRefGoogle Scholar
  67. Soulsby, R. (1997). Dynamics of marine sands: A manual for practical applications. UK: Thomas Telford.Google Scholar
  68. Soulsby, R. (2006). Simplified calculation of wave orbital velocities.Google Scholar
  69. Soulsby, R., & Clarke, S. (2005) Bed shear-stresses under combined waves and currents on smooth and rough beds. HR Wallingford, Report TR137.Google Scholar
  70. Tambroni, N., Blondeaux, P., & Vittori, G. (2015). A simple model of wave-current interaction. Journal of Fluid Mechanics, 775, 328–348.MathSciNetCrossRefGoogle Scholar
  71. Tatum, S., Allmark, M., Frost, C., O’Doherty, D., Mason-Jones, A., & O’Doherty, T. (2016). Cfd modelling of a tidal stream turbine subjected to profiled flow and surface gravity waves. International Journal of Marine Energy.Google Scholar
  72. Van Loan, C. (1992). Computational frameworks for the fast Fourier transform (Vol. 10). USA: SIAM.CrossRefMATHGoogle Scholar
  73. Van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. i: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering, 133(6), 649–667.Google Scholar
  74. Venugopal, V., & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (pp. 09–090100909010). American Society of Mechanical EngineersGoogle Scholar
  75. Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105–113.CrossRefGoogle Scholar
  76. Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230–244.CrossRefGoogle Scholar
  77. Whitham, G. B. (2011). Linear and nonlinear waves (Vol. 42). USA: Wiley.MATHGoogle Scholar
  78. Wiberg, P. L., & Sherwood, C. R. (2008). Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers & Geosciences, 34(10), 1243–1262.CrossRefGoogle Scholar
  79. Wolf, J., & Prandle, D. (1999). Some observations of wave-current interaction. Coastal Engineering, 37(3), 471–485.CrossRefGoogle Scholar
  80. Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Ocean Engineering, Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  2. 2.School of Ocean SciencesBangor UniversityBangorUK

Personalised recommendations