Abstract
When conducting tidal energy resource characterization and assessment, it is important to capture the strong variations of tidal currents in time and space. Field measurements can quantify many of these variations, which have both deterministic and stochastic components. The deterministic components occur on timescales of hours to years. As such, they are repeatable and well-suited to harmonic analyses associated with astronomical tidal forcing. The stochastic components are well-suited to statistical descriptions of fluid turbulence , from the short scales (milliseconds and millimeters), where dissipation occurs, to the long scales (seconds and meters), where large eddies occur. While the resolution of deterministic components may be adequate for characterizing annual energy production, both components need to be quantified to determine design loads on tidal energy conversion devices. In addition to the direct utility of field measurements to characterize and assess the tidal energy resource, field measurements are also essential to validate computational models used to assess the resource over large spatial domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Several figures, which have not been published previously in academic papers, use data from this case study. The data and more information regarding the case study are available at http://depts.washington.edu/nnmrec/project_meas.html#admiralty.
- 2.
Many early tidal resource assessments at the site, regional, and national levels did, however, attempt to do this, prior to the emergence of a better understanding of energy balances in tidal channels.
References
Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2013). The available power from tidal stream turbines in the Pentland Firth. In Proceedings of the Royal Society A, 469(2157), 20130072. The Royal Society.
Blachfield, J., Garrett, C., Rowe, A., & Wild, P. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of IMechE Part A: Journal of Power Energy, 222(A3), 289–297.
Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal-stream generators. Journal of Power Energy, 221, 137–146.
Boehme, T., Taylor, J., Wallace, A. R., & Bialek, J. (2006). Matching renewable electricity generation with demand. Edinburgh: The Scottish Executive.
Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal-stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.
Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338. ISSN 1364-0321. doi:10.1016/j.rser.2012.02.061.
Easton, M. C., Woolf, D. K., & Bowyer, P. A. (2012). The dynamics of an energetic tidal channel, the Pentland Firth, Scotland. Continental Shelf Research, 48, 50–60.
Fairley, I., Evans, P., Wooldridge, C., Willis, M., & Masters, I. (2013). Evaluation of tidal stream resource in a potential array area via direct measurements. Renewable Energy, 57, 70–78.
Frost, C., Morris, C. E., Mason-Jones, A., O’Doherty, D. M., & O’Doherty, T. (2015). The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy, 78, 609–620.
Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society A, 461, 2563–2572.
Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.
Garrett, C., & Cummins, P. (2008). Limits to tidal current power. Renewable Energy, 33, 2485–2490.
Godin, G. (1983). On the predictability of currents. International Hydrographic Review, 60, 119–126.
Goundar, J. N., & Ahmed, M. R. (2014). Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14–22.
Guerra, M., & Thomson, J. (in minor revision). Turbulence measurements from 5-beam ADCPs. Journal of Atmospheric and Ocean Technology.
Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.
IEC (2015) TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters—Part 201: Tidal energy resource assessment and characterization.
Iyer, A., Couch, S., Harrison, G., & Wallace, A. (2013). Variability and phasing of tidal current energy around the United Kingdom. Renewable Energy, 51, 343–357.
Jonkman, J. B., & Kilcher, L. (2012). TurbSim user’s guide: Version 1.06. 00, National Renewable Energy Laboratory. Technical report. https://wind.nrel.gov/designcodes/preprocessors/turbsim/TurbSim.pdf.
Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.
Kilcher, L., Thomson, J., Talbert, J., & deKlerk, A. (2016). Measuring turbulence from moored acoustic Doppler velocimeters: A manual to quantifying inflow at tidal energy sites. NREL technical report TP-5000-62979.
Kutney, T., Karsten, R., & Polagye, B. (2013). Priorities for reducing tidal energy resource uncertainty. In European Wave and Tidal Energy Conference, Aalborg, Denmark, September 2–5.
Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83(1), 403–415.
McCaffrey, K., Fox-Kemper, B., Hamlington, P. E., & Thomson, J. (2015). Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis. Renewable Energy, 76, 441–453.
Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, 66, 729–746.
National Research Council. (2013). An evaluation of the U.S. department of energy’s marine and hydrokinetic resource assessments. ISBN 978-0-309-26999-5, 114 p.
Neary, V., Gunawan, B., Richmond, M., Durgesh, V., Polagye, B., Thomson, J., Muste, M., & Fontaine, A. (2011). Field measurements at rivers and tidal current sites for hydrokinetic energy development: best practices manual. Oak Ridge National Laboratory Technical Manual 2011/419.
Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.
O’Rourke, F., Boyle, F., & Reynolds, A. (2010). Tidal current energy resource assessment in Ireland: Current status and future update. Renewable and Sustainable Energy Reviews, 14, 3206–3212.
Palodichuk, M., Polagye, B., & Thomson, J. (2013). Resource mapping at tidal energy sites. Journal of Ocean Engineering, 38.
Pawlowicz, R., Beardsley, R., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929–937.
Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, US. Proceedings of IMechE, Part A: Journal of Power and Energy, 227.
Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.
Polagye, B., Malte, P., Kawase, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of IMechE, Part A: Journal of Power and Energy, 222(5), 471–484.
Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterizing the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.
Sanchez, M., Carballo, R., Ramos, V., Álvarez, M., Vazquez, A., & Iglesias, G. (2014). Impact of tidal stream energy exploitation on estuarine hydrodynamics. Coastal Engineering Proceedings, 1(34), 22.
Serhadlıoğlu, S., Adcock, T. A., Houlsby, G. T., Draper, S., & Borthwick, A. G. (2013). Tidal stream energy resource assessment of the Anglesey Skerries. International Journal of Marine Energy, 3, e98–e111.
Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.
Thomson, J., Richmond, M., Polagye, B., & Durgesh, V. (2012). Measurements of turbulence at two tidal energy sites. Journal of Ocean Engineering, 37.
Thomson, J., Talbert, J., de Klerk, A., Zippel, S., Guerra, M., & Kilcher, L. (2015). Turbulence measurements from moving platforms. In Currents, Waves, and Turbulence Measurements Workshop, St. Petersburg, FL.
Thyng. (2012). Numerical simulation of admiralty inlet, WA, with tidal hydrokinetic turbine siting application. PhD Thesis, University of Washington.
Thyng, K. M., Riley, J. J., & Thomson, J. (2013). Inference of turbulence parameters from a ROMS simulation using the k-ε closure scheme. Ocean Modelling, 72, 104–118.
Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.
Yang, Z., & Wang, T. (2013). Tidal residual eddies and their effect on water exchange in puget sound. Ocean Dynamics, 63, 995–1009.
Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1 Supplement), 187–202. doi:10.1007/s12237-013-9684-2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Thomson, J., Polagye, B., Neary, V.S. (2017). Tidal Energy Resource Measurements. In: Yang, Z., Copping, A. (eds) Marine Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-53536-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-53536-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53534-0
Online ISBN: 978-3-319-53536-4
eBook Packages: EnergyEnergy (R0)