Skip to main content

Tidal Energy Resource Measurements

  • Chapter
  • First Online:
Marine Renewable Energy

Abstract

When conducting tidal energy resource characterization and assessment, it is important to capture the strong variations of tidal currents in time and space. Field measurements can quantify many of these variations, which have both deterministic and stochastic components. The deterministic components occur on timescales of hours to years. As such, they are repeatable and well-suited to harmonic analyses associated with astronomical tidal forcing. The stochastic components are well-suited to statistical descriptions of fluid turbulence , from the short scales (milliseconds and millimeters), where dissipation occurs, to the long scales (seconds and meters), where large eddies occur. While the resolution of deterministic components may be adequate for characterizing annual energy production, both components need to be quantified to determine design loads on tidal energy conversion devices. In addition to the direct utility of field measurements to characterize and assess the tidal energy resource, field measurements are also essential to validate computational models used to assess the resource over large spatial domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Several figures, which have not been published previously in academic papers, use data from this case study. The data and more information regarding the case study are available at http://depts.washington.edu/nnmrec/project_meas.html#admiralty.

  2. 2.

    Many early tidal resource assessments at the site, regional, and national levels did, however, attempt to do this, prior to the emergence of a better understanding of energy balances in tidal channels.

References

  • Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2013). The available power from tidal stream turbines in the Pentland Firth. In Proceedings of the Royal Society A, 469(2157), 20130072. The Royal Society.

    Google Scholar 

  • Blachfield, J., Garrett, C., Rowe, A., & Wild, P. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of IMechE Part A: Journal of Power Energy, 222(A3), 289–297.

    Article  Google Scholar 

  • Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal-stream generators. Journal of Power Energy, 221, 137–146.

    Article  Google Scholar 

  • Boehme, T., Taylor, J., Wallace, A. R., & Bialek, J. (2006). Matching renewable electricity generation with demand. Edinburgh: The Scottish Executive.

    Google Scholar 

  • Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal-stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.

    Article  Google Scholar 

  • Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338. ISSN 1364-0321. doi:10.1016/j.rser.2012.02.061.

  • Easton, M. C., Woolf, D. K., & Bowyer, P. A. (2012). The dynamics of an energetic tidal channel, the Pentland Firth, Scotland. Continental Shelf Research, 48, 50–60.

    Article  Google Scholar 

  • Fairley, I., Evans, P., Wooldridge, C., Willis, M., & Masters, I. (2013). Evaluation of tidal stream resource in a potential array area via direct measurements. Renewable Energy, 57, 70–78.

    Article  Google Scholar 

  • Frost, C., Morris, C. E., Mason-Jones, A., O’Doherty, D. M., & O’Doherty, T. (2015). The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy, 78, 609–620.

    Article  Google Scholar 

  • Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society A, 461, 2563–2572.

    Google Scholar 

  • Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.

    Google Scholar 

  • Garrett, C., & Cummins, P. (2008). Limits to tidal current power. Renewable Energy, 33, 2485–2490.

    Article  Google Scholar 

  • Godin, G. (1983). On the predictability of currents. International Hydrographic Review, 60, 119–126.

    Google Scholar 

  • Goundar, J. N., & Ahmed, M. R. (2014). Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14–22.

    Article  Google Scholar 

  • Guerra, M., & Thomson, J. (in minor revision). Turbulence measurements from 5-beam ADCPs. Journal of Atmospheric and Ocean Technology.

    Google Scholar 

  • Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.

    Article  Google Scholar 

  • IEC (2015) TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters—Part 201: Tidal energy resource assessment and characterization.

    Google Scholar 

  • Iyer, A., Couch, S., Harrison, G., & Wallace, A. (2013). Variability and phasing of tidal current energy around the United Kingdom. Renewable Energy, 51, 343–357.

    Article  Google Scholar 

  • Jonkman, J. B., & Kilcher, L. (2012). TurbSim user’s guide: Version 1.06. 00, National Renewable Energy Laboratory. Technical report. https://wind.nrel.gov/designcodes/preprocessors/turbsim/TurbSim.pdf.

  • Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.

    Google Scholar 

  • Kilcher, L., Thomson, J., Talbert, J., & deKlerk, A. (2016). Measuring turbulence from moored acoustic Doppler velocimeters: A manual to quantifying inflow at tidal energy sites. NREL technical report TP-5000-62979.

    Google Scholar 

  • Kutney, T., Karsten, R., & Polagye, B. (2013). Priorities for reducing tidal energy resource uncertainty. In European Wave and Tidal Energy Conference, Aalborg, Denmark, September 2–5.

    Google Scholar 

  • Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83(1), 403–415.

    Article  Google Scholar 

  • McCaffrey, K., Fox-Kemper, B., Hamlington, P. E., & Thomson, J. (2015). Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis. Renewable Energy, 76, 441–453.

    Article  Google Scholar 

  • Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, 66, 729–746.

    Article  Google Scholar 

  • National Research Council. (2013). An evaluation of the U.S. department of energy’s marine and hydrokinetic resource assessments. ISBN 978-0-309-26999-5, 114 p.

    Google Scholar 

  • Neary, V., Gunawan, B., Richmond, M., Durgesh, V., Polagye, B., Thomson, J., Muste, M., & Fontaine, A. (2011). Field measurements at rivers and tidal current sites for hydrokinetic energy development: best practices manual. Oak Ridge National Laboratory Technical Manual 2011/419.

    Google Scholar 

  • Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.

    Article  Google Scholar 

  • O’Rourke, F., Boyle, F., & Reynolds, A. (2010). Tidal current energy resource assessment in Ireland: Current status and future update. Renewable and Sustainable Energy Reviews, 14, 3206–3212.

    Article  Google Scholar 

  • Palodichuk, M., Polagye, B., & Thomson, J. (2013). Resource mapping at tidal energy sites. Journal of Ocean Engineering, 38.

    Google Scholar 

  • Pawlowicz, R., Beardsley, R., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929–937.

    Article  Google Scholar 

  • Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, US. Proceedings of IMechE, Part A: Journal of Power and Energy, 227.

    Google Scholar 

  • Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.

    Article  Google Scholar 

  • Polagye, B., Malte, P., Kawase, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of IMechE, Part A: Journal of Power and Energy, 222(5), 471–484.

    Google Scholar 

  • Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterizing the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.

    Google Scholar 

  • Sanchez, M., Carballo, R., Ramos, V., Álvarez, M., Vazquez, A., & Iglesias, G. (2014). Impact of tidal stream energy exploitation on estuarine hydrodynamics. Coastal Engineering Proceedings, 1(34), 22.

    Article  Google Scholar 

  • Serhadlıoğlu, S., Adcock, T. A., Houlsby, G. T., Draper, S., & Borthwick, A. G. (2013). Tidal stream energy resource assessment of the Anglesey Skerries. International Journal of Marine Energy, 3, e98–e111.

    Article  Google Scholar 

  • Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.

    Google Scholar 

  • Thomson, J., Richmond, M., Polagye, B., & Durgesh, V. (2012). Measurements of turbulence at two tidal energy sites. Journal of Ocean Engineering, 37.

    Google Scholar 

  • Thomson, J., Talbert, J., de Klerk, A., Zippel, S., Guerra, M., & Kilcher, L. (2015). Turbulence measurements from moving platforms. In Currents, Waves, and Turbulence Measurements Workshop, St. Petersburg, FL.

    Google Scholar 

  • Thyng. (2012). Numerical simulation of admiralty inlet, WA, with tidal hydrokinetic turbine siting application. PhD Thesis, University of Washington.

    Google Scholar 

  • Thyng, K. M., Riley, J. J., & Thomson, J. (2013). Inference of turbulence parameters from a ROMS simulation using the k-ε closure scheme. Ocean Modelling, 72, 104–118.

    Article  Google Scholar 

  • Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.

    Article  Google Scholar 

  • Yang, Z., & Wang, T. (2013). Tidal residual eddies and their effect on water exchange in puget sound. Ocean Dynamics, 63, 995–1009.

    Article  Google Scholar 

  • Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1 Supplement), 187–202. doi:10.1007/s12237-013-9684-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thomson, J., Polagye, B., Neary, V.S. (2017). Tidal Energy Resource Measurements. In: Yang, Z., Copping, A. (eds) Marine Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-53536-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53536-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53534-0

  • Online ISBN: 978-3-319-53536-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics