Tidal Energy Resource Measurements

Chapter

Abstract

When conducting tidal energy resource characterization and assessment, it is important to capture the strong variations of tidal currents in time and space. Field measurements can quantify many of these variations, which have both deterministic and stochastic components. The deterministic components occur on timescales of hours to years. As such, they are repeatable and well-suited to harmonic analyses associated with astronomical tidal forcing. The stochastic components are well-suited to statistical descriptions of fluid turbulence, from the short scales (milliseconds and millimeters), where dissipation occurs, to the long scales (seconds and meters), where large eddies occur. While the resolution of deterministic components may be adequate for characterizing annual energy production, both components need to be quantified to determine design loads on tidal energy conversion devices. In addition to the direct utility of field measurements to characterize and assess the tidal energy resource, field measurements are also essential to validate computational models used to assess the resource over large spatial domains.

Keywords

Tidal currents Turbulence Harmonic analysis Asymmetry Site characterization 

References

  1. Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2013). The available power from tidal stream turbines in the Pentland Firth. In Proceedings of the Royal Society A, 469(2157), 20130072. The Royal Society.Google Scholar
  2. Blachfield, J., Garrett, C., Rowe, A., & Wild, P. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of IMechE Part A: Journal of Power Energy, 222(A3), 289–297.CrossRefGoogle Scholar
  3. Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal-stream generators. Journal of Power Energy, 221, 137–146.CrossRefGoogle Scholar
  4. Boehme, T., Taylor, J., Wallace, A. R., & Bialek, J. (2006). Matching renewable electricity generation with demand. Edinburgh: The Scottish Executive.Google Scholar
  5. Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal-stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.CrossRefGoogle Scholar
  6. Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338. ISSN 1364-0321. doi:10.1016/j.rser.2012.02.061.
  7. Easton, M. C., Woolf, D. K., & Bowyer, P. A. (2012). The dynamics of an energetic tidal channel, the Pentland Firth, Scotland. Continental Shelf Research, 48, 50–60.CrossRefGoogle Scholar
  8. Fairley, I., Evans, P., Wooldridge, C., Willis, M., & Masters, I. (2013). Evaluation of tidal stream resource in a potential array area via direct measurements. Renewable Energy, 57, 70–78.CrossRefGoogle Scholar
  9. Frost, C., Morris, C. E., Mason-Jones, A., O’Doherty, D. M., & O’Doherty, T. (2015). The effect of tidal flow directionality on tidal turbine performance characteristics. Renewable Energy, 78, 609–620.CrossRefGoogle Scholar
  10. Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society A, 461, 2563–2572.Google Scholar
  11. Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.Google Scholar
  12. Garrett, C., & Cummins, P. (2008). Limits to tidal current power. Renewable Energy, 33, 2485–2490.CrossRefGoogle Scholar
  13. Godin, G. (1983). On the predictability of currents. International Hydrographic Review, 60, 119–126.Google Scholar
  14. Goundar, J. N., & Ahmed, M. R. (2014). Marine current energy resource assessment and design of a marine current turbine for Fiji. Renewable Energy, 65, 14–22.CrossRefGoogle Scholar
  15. Guerra, M., & Thomson, J. (in minor revision). Turbulence measurements from 5-beam ADCPs. Journal of Atmospheric and Ocean Technology. Google Scholar
  16. Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.CrossRefGoogle Scholar
  17. IEC (2015) TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters—Part 201: Tidal energy resource assessment and characterization.Google Scholar
  18. Iyer, A., Couch, S., Harrison, G., & Wallace, A. (2013). Variability and phasing of tidal current energy around the United Kingdom. Renewable Energy, 51, 343–357.CrossRefGoogle Scholar
  19. Jonkman, J. B., & Kilcher, L. (2012). TurbSim user’s guide: Version 1.06. 00, National Renewable Energy Laboratory. Technical report. https://wind.nrel.gov/designcodes/preprocessors/turbsim/TurbSim.pdf.
  20. Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.Google Scholar
  21. Kilcher, L., Thomson, J., Talbert, J., & deKlerk, A. (2016). Measuring turbulence from moored acoustic Doppler velocimeters: A manual to quantifying inflow at tidal energy sites. NREL technical report TP-5000-62979.Google Scholar
  22. Kutney, T., Karsten, R., & Polagye, B. (2013). Priorities for reducing tidal energy resource uncertainty. In European Wave and Tidal Energy Conference, Aalborg, Denmark, September 2–5.Google Scholar
  23. Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83(1), 403–415.CrossRefGoogle Scholar
  24. McCaffrey, K., Fox-Kemper, B., Hamlington, P. E., & Thomson, J. (2015). Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis. Renewable Energy, 76, 441–453.CrossRefGoogle Scholar
  25. Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, 66, 729–746.CrossRefGoogle Scholar
  26. National Research Council. (2013). An evaluation of the U.S. department of energy’s marine and hydrokinetic resource assessments. ISBN 978-0-309-26999-5, 114 p.Google Scholar
  27. Neary, V., Gunawan, B., Richmond, M., Durgesh, V., Polagye, B., Thomson, J., Muste, M., & Fontaine, A. (2011). Field measurements at rivers and tidal current sites for hydrokinetic energy development: best practices manual. Oak Ridge National Laboratory Technical Manual 2011/419.Google Scholar
  28. Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renewable Energy, 68, 337–350.CrossRefGoogle Scholar
  29. O’Rourke, F., Boyle, F., & Reynolds, A. (2010). Tidal current energy resource assessment in Ireland: Current status and future update. Renewable and Sustainable Energy Reviews, 14, 3206–3212.CrossRefGoogle Scholar
  30. Palodichuk, M., Polagye, B., & Thomson, J. (2013). Resource mapping at tidal energy sites. Journal of Ocean Engineering, 38.Google Scholar
  31. Pawlowicz, R., Beardsley, R., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929–937.CrossRefGoogle Scholar
  32. Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, US. Proceedings of IMechE, Part A: Journal of Power and Energy, 227.Google Scholar
  33. Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.CrossRefGoogle Scholar
  34. Polagye, B., Malte, P., Kawase, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of IMechE, Part A: Journal of Power and Energy, 222(5), 471–484.Google Scholar
  35. Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterizing the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.Google Scholar
  36. Sanchez, M., Carballo, R., Ramos, V., Álvarez, M., Vazquez, A., & Iglesias, G. (2014). Impact of tidal stream energy exploitation on estuarine hydrodynamics. Coastal Engineering Proceedings, 1(34), 22.CrossRefGoogle Scholar
  37. Serhadlıoğlu, S., Adcock, T. A., Houlsby, G. T., Draper, S., & Borthwick, A. G. (2013). Tidal stream energy resource assessment of the Anglesey Skerries. International Journal of Marine Energy, 3, e98–e111.CrossRefGoogle Scholar
  38. Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.Google Scholar
  39. Thomson, J., Richmond, M., Polagye, B., & Durgesh, V. (2012). Measurements of turbulence at two tidal energy sites. Journal of Ocean Engineering, 37.Google Scholar
  40. Thomson, J., Talbert, J., de Klerk, A., Zippel, S., Guerra, M., & Kilcher, L. (2015). Turbulence measurements from moving platforms. In Currents, Waves, and Turbulence Measurements Workshop, St. Petersburg, FL.Google Scholar
  41. Thyng. (2012). Numerical simulation of admiralty inlet, WA, with tidal hydrokinetic turbine siting application. PhD Thesis, University of Washington.Google Scholar
  42. Thyng, K. M., Riley, J. J., & Thomson, J. (2013). Inference of turbulence parameters from a ROMS simulation using the k-ε closure scheme. Ocean Modelling, 72, 104–118.CrossRefGoogle Scholar
  43. Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRefGoogle Scholar
  44. Yang, Z., & Wang, T. (2013). Tidal residual eddies and their effect on water exchange in puget sound. Ocean Dynamics, 63, 995–1009.CrossRefGoogle Scholar
  45. Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1 Supplement), 187–202. doi:10.1007/s12237-013-9684-2.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Applied Physics Laboratory and Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA
  3. 3.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations