Challenges to Characterization of Sound Produced by Marine Energy Converters



The acoustic characteristics of marine energy converters are of interest to those attempting to quantify their environmental effects at larger scale. Such efforts are complicated by the time variation in marine energy converter sound caused by changes in the environmental forcing and converter operation, the difficulty of identifying marine energy converter sound amidst background noise from a range of sources, and the potential masking of marine energy converter sound by non-propagating flow-noise. This chapter discusses each of these challenges and proposes potential solutions to overcome them in a cost-effective manner.


Marine energy converter Underwater noise Underwater sound Flow-noise Wave energy Current energy Tidal energy 



Many thanks to Chris Bassett for reviewing an early draft of the chapter and providing helpful comments, as well as subsequent comments from three anonymous reviewers. Thanks also to Paul Murphy for the example of flow-noise from a bottom-mounted hydrophone at the US Navy wave energy Test Site.


  1. Au, W. W., & Banks, K. (1998). The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. The Journal of the Acoustical Society of America, 103(1), 41–47.CrossRefGoogle Scholar
  2. Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., & Thompson, P. M. (2010). Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Marine Pollution Bulletin, 60(6), 888–897.CrossRefGoogle Scholar
  3. Bassett, C., Polagye, B., Holt, M., & Thomson, J. (2012). A vessel noise budget for Admiralty Inlet, Puget Sound, Washington (USA). The Journal of the Acoustical Society of America, 132(6), 3706–3719.CrossRefGoogle Scholar
  4. Bassett, C., Thomson, J., & Polagye, B. (2013). Sediment-generated noise and bed stress in a tidal channel. Journal of Geophysical Research: Oceans, 118(4), 2249–2265.Google Scholar
  5. Bassett, C., Thomson, J., Dahl, P. H., & Polagye, B. (2014). Flow-noise and turbulence in two tidal channels. The Journal of the Acoustical Society of America, 135(4), 1764–1774.CrossRefGoogle Scholar
  6. Buck, B. M., & Greene, C. R. (1980). A two-hydrophone method of eliminating the effects of nonacoustic noise interference in measurements of infrasonic ambient noise levels. The Journal of the Acoustical Society of America, 68(5), 1306–1308.CrossRefGoogle Scholar
  7. Chung, J. Y. (1977). Rejection of flow noise using a coherence function method. The Journal of the Acoustical Society of America, 62(2), 388–395.MathSciNetCrossRefGoogle Scholar
  8. Copping, A., Sather, N., Hanna, L., Whiting, J., Zydlewski, G., Staines, G., et al. (2016). Annex IV 2016 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. pp. 224.Google Scholar
  9. Dowling, A. P., & Ffowcs Williams, J. E. (1983). Sound and sources of sound. New York, NY, USA: Wiley.MATHGoogle Scholar
  10. Ellison, W. T., Southall, B. L., Clark, C. W., & Frankel, A. S. (2012). A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conservation Biology, 26(1), 21–28.CrossRefGoogle Scholar
  11. Farcas, A., Thompson, P. M., & Merchant, N. D. (2016). Underwater noise modelling for environmental impact assessment. Environmental Impact Assessment Review, 57, 114–122.CrossRefGoogle Scholar
  12. Haxel, J. H., Dziak, R. P., & Matsumoto, H. (2013). Observations of shallow water marine ambient sound: the low frequency underwater soundscape of the central Oregon coast. The Journal of the Acoustical Society of America, 133(5), 2586–2596.CrossRefGoogle Scholar
  13. Hubbard, H. H., & Shepherd, K. P. (1991). Aeroacoustics of large wind turbines. The Journal of the Acoustical Society of America, 89(6), 2495–2508.CrossRefGoogle Scholar
  14. International Electrotechnical Commission (IEC). (2012). Marine energy—Wave, tidal and other water current converters—Part 100: Electricity producing wave energy converters—Power performance assessment. IEC TS, 62600–100, 2012.Google Scholar
  15. Lee, S., Kim, S. R., Lee, Y. K., Yoon, J. R., & Lee, P. H. (2011). Experiment on effect of screening hydrophone for reduction of flow-induced ambient noise in ocean. Japanese Journal of Applied Physics, 50(7S), 07HG02.Google Scholar
  16. Ma, B. B., Nystuen, J. A., & Lien, R. C. (2005). Prediction of underwater sound levels from rain and wind. The Journal of the Acoustical Society of America, 117(6), 3555–3565.CrossRefGoogle Scholar
  17. MAN Diesel (2009). Propulsion trends in container vessels. MAN Diesel A/S, Copenhagen.Google Scholar
  18. McKenna, M. F., Wiggins, S. M., & Hildebrand, J. A. (2013). Relationship between container ship underwater noise levels and ship design, operational and oceanographic conditions. Scientific reports, 3.Google Scholar
  19. Merchant, N. D., Blondel, P., Dakin, D. T., & Dorocicz, J. (2012). Averaging underwater noise levels for environmental assessment of shipping. The Journal of the Acoustical Society of America, 132(4), EL343–EL349.Google Scholar
  20. Polagye, B. L., & Murphy, P. G. (2015). Acoustic characterization of a hydrokinetic turbine. In Proceedings of the 11th European Wave and Tidal Energy Conference. Nantes, France, September 5–11.Google Scholar
  21. Richardson, W. J., Greene Jr, C. R., Malme, C. I., & Thomson, D. H. (2013). Marine mammals and noise. Academic press.Google Scholar
  22. Robinson, S. P., Lepper, P. A., & Hazelwood, R. A. (2014). Good practice guide for underwater noise measurement, National Measurement Office, Marine Scotland, The Crown Estate, NPL Good Practice Guide No. 133, ISSN: 1368-6550.Google Scholar
  23. Spiesberger, J. L., & Fristrup, K. M. (1990). Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. American Naturalist, 107–153.Google Scholar
  24. Strasberg, M. (1979). Nonacoustic noise interference in measurements of infrasonic ambient noise. The Journal of the Acoustical Society of America, 66(5), 1487–1493.CrossRefGoogle Scholar
  25. Thomson, J. (2012). Wave breaking dissipation observed with “SWIFT” drifters. Journal of Atmospheric and Oceanic Technology, 29(12), 1866–1882.CrossRefGoogle Scholar
  26. Urick, R. J. (1975). Principles of underwater sound. New York: McGrawHill.Google Scholar
  27. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.CrossRefGoogle Scholar
  28. Williams, R., Wright, A. J., Ashe, E., Blight, L. K., Bruintjes, R., Canessa, R., et al. (2015). Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean and Coastal Management, 115, 17–24.CrossRefGoogle Scholar
  29. Wilson, B., Benjamins, S., & Elliott, J. (2013). Using drifting passive echolocation loggers to study harbour porpoises in tidal-stream habitats. Endangered Species Research, 22(2), 125–143.CrossRefGoogle Scholar
  30. Yang, X., Haas, K. A., Fritz, H. M., French, S. P., Shi, X., Neary, V. S., et al. (2015). National geodatabase of ocean current power resource in USA. Renewable and Sustainable Energy Reviews, 44, 496–507.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations