The Impact of Marine Renewable Energy Extraction on Sediment Dynamics

Chapter

Abstract

The extraction of marine energy, through either tidal or wave array operation, will clearly influence the hydrodynamics of a region. Although the influence on tidal currents and wave properties is likely to be very small for most extraction scenarios, the influence on bed shear stress is likely to be greater, because bed shear stress is quadratically related to tidal currents and wave orbital velocities. Further, the transport of sediments is a function of tidal current and wave orbital velocity cubed. Therefore, even small modifications to the flow field through tidal or wave array operation could lead to significant impacts on regional sediment dynamics. In this chapter, after providing an introduction to sediment dynamics in the marine environment, we explore the impact of tidal energy devices/arrays on regional sediment dynamics, with a particular emphasis on offshore sand banks—important sedimentary systems that protect our coastlines from the full impact of storm waves. Next, we discuss how generating electricity from waves could influence nearshore sediment processes, such as beach erosion or replenishment, over a range of timescales. To assess the magnitude of impacts on sedimentary systems, it is essential to consider the scale of the impact in relation to the range of natural variability. We suggest ways in which impacts can be assessed using numerical models, tuned by in situ measurements, that quantify variability over a range of timescales from individual storm events and lunar cycles to seasonal and interannual periods. We also discuss the sedimentary processes associated with tidal lagoons, such as scour and sediment drift outside a lagoon and sediment accretion inside a lagoon.

Keywords

Marine energy Sediments Sediment transport Tidal energy Wave energy Lagoons Tidal turbine Morphodynamics Bed shear stress Sand banks Beaches Beach response Monitoring 

References

  1. Abanades, J., Greaves, D., & Iglesias, G. (2014a). Wave farm impact on the beach profile: A case study. Coastal Engineering, 86, 36–44.CrossRefGoogle Scholar
  2. Abanades, J., Greaves, D., & Iglesias, G. (2014b). Coastal defence through wave farms. Coastal Engineering, 91, 299–307.CrossRefGoogle Scholar
  3. Abanades, J., Greaves, D., & Iglesias, G. (2015a). Coastal defence using wave farms: The role of farm-to-coast distance. Renewable Energy, 75, 572–582.CrossRefGoogle Scholar
  4. Abanades, J., Greaves, D., & Iglesias, G. (2015b). Wave farm impact on beach modal state. Marine Geology, 361, 126–135.CrossRefGoogle Scholar
  5. Adcock, T. A. A., Draper, S., Houlsby, G. T., Borthwick, A. G. L., & Serhadlıoğlu, S. (2013). The available power from tidal stream turbines in the Pentland Firth. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 469, 2157.CrossRefGoogle Scholar
  6. Ahmadian, R., & Falconer, R. A. (2012). Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output. Renewable Energy, 44, 318–327.CrossRefGoogle Scholar
  7. Ahmadian, R., Falconer, R., & Bockelmann-Evans, B. (2012). Far-field modelling of the hydro-environmental impact of tidal stream turbines. Renewable Energy, 38, 107–116.CrossRefGoogle Scholar
  8. Ahmadian, R., Morris, C., & Falconer, R. (2010). Hydro-environmental modelling of off-shore and coastally attached impoundments off the north wales coast. In First IAHR European Congress, Edinburgh (UK), 4–6 May 2010.Google Scholar
  9. Angeloudis, A., Ahmadian, R., Bockelmann-Evans, B., & Falconer, R. A. (2015). Numerical modelling of a tidal lagoon along the North Wales coast. In C. G. Soares (Ed.), Renewable energies offshore (pp. 139–145).Google Scholar
  10. Angeloudis, A., Ahmadian, R., Falconer, R. A., & Bockelmann-Evans, B. (2016). Numerical model simulations for optimisation of tidal lagoon schemes. Applied Energy, 165, 522–536.CrossRefGoogle Scholar
  11. Aquatera Ltd and Marine Space. (2015). ORJIP ocean energy—The forward look; an ocean energy environmental research strategy for the UK. Report No. P627, Version 3, July 2015, 62 pp.Google Scholar
  12. Barnard, P. L., Short, A. D., Harley, M. D., Splinter, K. D., Vitousek, S., Turner, I. L., et al. (2015). Coastal vulnerability across the Pacific dominated by El Nino/Southern oscillation. Nature Geoscience, 8(10), 801–807.CrossRefGoogle Scholar
  13. Bastos, A. C., Kenyon, N. H., & Collins, M. (2002). Sedimentary processes, bedforms and facies, associated with a coastal headland: Portland Bill, Southern UK. Marine Geology, 187, 235–258.CrossRefGoogle Scholar
  14. Bell, P., Bird, C., & Plater, A. (2016). A temporal waterline approach to mapping intertidal areas using X-band marine radar. Coastal Engineering, 107, 84–101.CrossRefGoogle Scholar
  15. Bowers, D., Gaffney, S., White, M., & Bowyer, P. (2002). Turbidity in the southern Irish Sea. Continental Shelf Research, 22, 2115–2126.CrossRefGoogle Scholar
  16. Bowers, D. G., Ellis, K. M., & Jones, S. E. (2005). Isolated turbidity maxima in shelf seas. Continental Shelf Research, 25, 1071–1080.CrossRefGoogle Scholar
  17. Brown, J. M., & Davies, A. G. (2009). Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Continental Shelf Research, 29, 1502–1514.CrossRefGoogle Scholar
  18. Burrows, R., Yates, N. C., Hedges, T. S., Li, M., Zhou, J. G., Chen, D. Y., et al. (2009). Tidal energy potential in UK waters. Proceedings of the ICE-Maritime Engineering, 162, 155–164.CrossRefGoogle Scholar
  19. Camenen, B., & Larroudé, P. (2003). Comparison of sediment transport formulae for the coastal environment. Coastal Engineering, 48, 111–132.CrossRefGoogle Scholar
  20. Cornett, A., Cousineau, J., & Nistor, I. (2013). Assessment of hydrodynamic impacts from tidal power lagoons in the Bay of Fundy. International Journal of Marine Energy, 1, 33–54.CrossRefGoogle Scholar
  21. De Vriend, H. J. (Ed.). (1993). Coastal morphodynamics: Processes and modelling. Coastal Engineering, 21(1–3).Google Scholar
  22. Den Boon, J. H., Sutherland, J., Whitehouse, R., Soulsby, R., Stam, C. J. M., Verhoeven, K., et al. (2004). Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In Proceedings of the European Wind Energy Conference (Vol. 14).Google Scholar
  23. Dissanayake, D. M. P. K., Roelvink, J. A., & van der Wegen, M. (2009). Modelled channel patterns in a schematized tidal inlet. Coastal Engineering, 56, 1069–1083.CrossRefGoogle Scholar
  24. Easton, M. C., Harendza, A., Woolf, D. K., & Jackson, A. C. (2011). Characterisation of a tidal energy site: Hydrodynamics and seabed structure. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK.Google Scholar
  25. Ellis, K., Binding, C., Bowers, D. G., Jones, S. E., & Simpson, J. H. (2008). A model of turbidity maintenance in the Irish Sea. Estuarine, Coastal and Shelf Science, 76, 765–774.CrossRefGoogle Scholar
  26. Emery, K. O. (1961). A simple method for measuring beach profiles. Limnology and Oceanography, 6, 90–93.CrossRefGoogle Scholar
  27. Evans, C. D. R. (1990). United Kingdom offshore regional report: The geology of the western English Channel and its western approaches. London: HMSO for the British Geological Survey. 93 pp.Google Scholar
  28. Fairley, I., & Karunarathna, H. (2014). The morphodynamics of a beach in the lee of wave energy converter arrays. In EIMR (Environmental Impacts of Marine Renewables) Conference, April 30–May 1, 2014, Stornoway, UK.Google Scholar
  29. Fairley, I., Masters, I., & Karunarathna, H. (2015). The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth. Renewable Energy, 80, 755–769.CrossRefGoogle Scholar
  30. Fairley, I., Masters, I., & Karunarathna, H. (2016). Numerical modelling of storm and surge events on offshore sandbanks. Marine Geology, 371, 106–119.CrossRefGoogle Scholar
  31. Falconer, R. A., Xia, J., Lin, B., & Ahmadian, R. (2009). The Severn barrage and other tidal energy options: Hydrodynamic and power output modeling. Science in China Series E: Technological Sciences, 52, 3413–3424.CrossRefMATHGoogle Scholar
  32. Gallagher, E. L., Elgar, S., & Guza, R. T. (1998). Observations of sand bar evolution on a natural beach. Journal of Geophysical Research, 103, 3203–3215.CrossRefGoogle Scholar
  33. Gonzalez-Santamaria, R., Zou, Q. P., & Pan, S. (2011). Two-way coupled wave and tide modelling of a wave farm. Journal of Coastal Research, 64, 1038–1042.Google Scholar
  34. Gonzalez-Santamaria, R., Zou, Q. P., & Pan, S. (2015). Impacts of a wave farm on waves, currents and coastal morphology in South West England. Estuaries and Coasts, 38, S159–S172.CrossRefGoogle Scholar
  35. Harley, M. D., Turner, I. L., Short, A. D., & Ranasinghe, R. (2011). Assessment and integration of conventional RTK-GPS and image derived beach survey methods for daily to decadal coastal monitoring. Coastal Engineering, 58, 194–205.CrossRefGoogle Scholar
  36. Harris, J. M., Whitehouse, R. J. S., & Sutherland, J. (2011). Marine scour and offshore wind—Lessons learnt and future challenges. In 30th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 5, pp. 849–858).Google Scholar
  37. Huthnance, J. M. (1982). On one mechanism forming linear sand banks. Journal of Estuarine and Coastal Marine Science, 14, 19–99.Google Scholar
  38. Iyer, A. S., Couch, S. J., Harrison, G. P., & Wallace, A. R. (2013). Variability and phasing of tidal current energy around the United Kingdom. Renewable Energy, 51, 343–357.CrossRefGoogle Scholar
  39. Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16, 329–341.CrossRefGoogle Scholar
  40. Kirby, R., & Shaw, T. L. (2005). Severn barrage, UK—Environmental reappraisal. Proceedings of the ICE-Engineering Sustainability, 158, 31–39.CrossRefGoogle Scholar
  41. Lewis, M. J., Neill, S. P., & Elliott, A. J. (2015a). Inter-annual variability of two contrasting offshore sand banks in a region of extreme tidal range. Journal of Coastal Research, 31, 265–275.CrossRefGoogle Scholar
  42. Lewis, M. J., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015b). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.CrossRefGoogle Scholar
  43. Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., & Piggott, M. D. (2015). Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renewable Energy, 76, 596–607.CrossRefGoogle Scholar
  44. Masselink, G., Austin, M., Scott, T., Poate, T., & Russell, P. (2014). Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology, 226, 76–93.CrossRefGoogle Scholar
  45. Masselink, G., & Short, A. D. (1993). The effect of tide range on beach morphodynamics and morphology—A conceptual beach model. Journal of Coastal Research, 9, 785–800.Google Scholar
  46. McCann, D. (2011). Long-term morphological modelling of tidal basins. Doctoral dissertation, Bangor University.Google Scholar
  47. Mendoza, E., Silva, R., Zanuttigh, B., Angelelli, E., Lykke Andersen, T., Martinelli, L., et al. (2014). Beach response to wave energy converter farms acting as coastal defence. Coastal Engineering, 87, 97–111.CrossRefGoogle Scholar
  48. Mitchell, N. C., Huthnance, J. M., Schmitt, T., & Todd, B. (2012). Threshold of erosion of submarine bedrock landscapes by tidal currents. Earth Surface Processes and Landforms, 38, 627–639.CrossRefGoogle Scholar
  49. Morgan, C. A., Cordell, J. R., & Simenstad, C. A. (1997). Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Marine Biology, 129, 309–317.CrossRefGoogle Scholar
  50. Neill, S. P. (2008). The role of Coriolis in sandbank formation due to a headland/island system. Estuarine, Coastal and Shelf Science, 79, 419–428.CrossRefGoogle Scholar
  51. Neill, S. P. (2009). A numerical study of lateral grain size sorting by an estuarine front. Estuarine, Coastal and Shelf Science, 81, 345–352.CrossRefGoogle Scholar
  52. Neill, S. P., & Elliott, A. J. (2004a). Observations and simulations of an unsteady island wake in the Firth of Forth, Scotland. Ocean Dynamics, 54, 324–332.CrossRefGoogle Scholar
  53. Neill, S. P., & Elliott, A. J. (2004b). In situ measurements of spring-neap variations to unsteady island wake development in the Firth of Forth, Scotland. Estuarine, Coastal and Shelf Science, 60, 229–239.CrossRefGoogle Scholar
  54. Neill, S. P., & Scourse, J. D. (2009). The formation of headland/island sandbanks. Continental Shelf Research, 29, 2167–2177.CrossRefGoogle Scholar
  55. Neill, S. P., Elliott, A. J., & Hashemi, M. R. (2008). A model of inter-annual variability in beach levels. Continental Shelf Research, 28, 1769–1781.CrossRefGoogle Scholar
  56. Neill, S. P., Hashemi, M. R., & Elliott, A. J. (2007). An enhanced depth-averaged tidal model for morphological studies in the presence of rotary currents. Continental Shelf Research, 27, 82–102.CrossRefGoogle Scholar
  57. Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2014). Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function. Energy, 73, 997–1006.CrossRefGoogle Scholar
  58. Neill, S. P., Hashemi, M. R., & Lewis, M. J. (2016). Tidal energy leasing and tidal phasing. Renewable Energy, 85, 580–587.CrossRefGoogle Scholar
  59. Neill, S. P., Jordan, J. R., & Couch, S. J. (2012). Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renewable Energy, 37, 387–397.CrossRefGoogle Scholar
  60. Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRefGoogle Scholar
  61. Pingree, R. D., & Griffiths, D. K. (1979). Sand transport paths around the British Isles resulting from M2 and M4 tidal interactions. Journal of the Marine Biological Association of the United Kingdom, 59, 497–513.CrossRefGoogle Scholar
  62. Pingree, R. D. (1978). The formation of the shambles and other banks by tidal stirring of the seas. Journal of the Marine Biological Association of the United Kingdom, 58, 211–226.CrossRefGoogle Scholar
  63. Poate, T., Masselink, G., & Russell, P. E. (2012). Assessment of potential morphodynamic response to wave hub. In Fourth International Conference on Ocean Energy, Dublin.Google Scholar
  64. Poate, T. G., Masselink, G., Russell, P., & Austin, M. (2014). Morphodynamic variability of high-energy macrotidal beaches, Cornwall, UK. Marine Geology, 320, 97–111.CrossRefGoogle Scholar
  65. Prandle, D. (1984). Simple Theory for Designing Tidal Power Schemes. Advances in Water Resources, 7, 21–27.CrossRefGoogle Scholar
  66. Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., et al. (2011). Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coastal Engineering, 58, 806–811.CrossRefGoogle Scholar
  67. Robins, P. E., Neill, S. P., & Lewis, M. J. (2014). Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renewable Energy, 72, 311–321.CrossRefGoogle Scholar
  68. Robins, P. E., Neill, S. P., Lewis, M. J., & Ward, S. L. (2015). Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.CrossRefGoogle Scholar
  69. Robinson, I. S. (1981). Tidal vorticity and residual circulation. Deep-Sea Research, 28, 195–212.CrossRefGoogle Scholar
  70. Roelvink, J. A. (2006). Coastal morphodynamic evolution techniques. Coastal Engineering, 53, 277–287.CrossRefGoogle Scholar
  71. Ruggiero, P., Kaminsky, G. M., Gelfenbaum, G., & Voigt, B. (2005). Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. Journal of Coastal Research, 21, 553–578.CrossRefGoogle Scholar
  72. Ruggiero, P., Walstra, D. J. R., Gelfenbaum, G., & Van Ormondt, M. (2009). Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling. Coastal Engineering, 56, 1153–1172.CrossRefGoogle Scholar
  73. Ruol, P., Zanuttigh, B., Martinelli, L., Kofoed, J. P., & Frigaard, P. (2011). Near-shore floating wave energy converters: Applications for coastal protection. In Proceedings of the 32nd International Conference on Coastal Engineering, Shanghai,Google Scholar
  74. Schmitt, T., & Mitchell, N. C. (2014). Dune-associated sand fluxes at the nearshore termination of a banner sand bank (Helwick Sands, Bristol Channel). Continental Shelf Research, 76, 64–74.CrossRefGoogle Scholar
  75. Schoonees, J. S., Theron, A. K., & Bevis, D. (2006). Shoreline accretion and sand transport at groynes inside the Port of Richards Bay. Coastal Engineering, 53, 1045–1058.CrossRefGoogle Scholar
  76. Shields, M. A., Woolf, D. K., Grist, E. P., Kerr, S. A., Jackson, A. C., Harris, R. E., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRefGoogle Scholar
  77. Soulsby, R. (1997). Dynamics of marine sands: A manual for practical applications. Thomas Telford, 272 pp.Google Scholar
  78. Thiébot, J., Bailly du Bois, P., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.CrossRefGoogle Scholar
  79. Van de Meene, Y. W. H., & Van Rijn, L. C. (2000). The shoreface-connected ridges along the central Dutch coast—part 2: Morphological modelling. Continental Shelf Research, 20, 2325–2345.CrossRefGoogle Scholar
  80. Van Landeghem, K. J., Baas, J. H., Mitchell, N. C., Wilcockson, D., & Wheeler, A. J. (2012). Reversed sediment wave migration in the Irish Sea, NW Europe: A reappraisal of the validity of geometry-based predictive modelling and assumptions. Marine Geology, 295, 95–112.CrossRefGoogle Scholar
  81. Vespremeanu-Stroe, A., Constantinescu, S., Tatui, F., & Giosan, L. (2007). Multi-decadal evolution and North Atlantic Oscillation influences on the dynamics of the Danube Delta shoreline. Journal of Coastal Research, 50, 157–162.Google Scholar
  82. Vӧgler, A., Christie, D., Lidster, M., & Morrison, J. (2011). Wave energy converters, sediment transport and coastal erosion. In ICES Annual Science Conference, 19–23 September 2011, Gdańsk, Poland.Google Scholar
  83. Whitehouse, R. (1998). Scour at marine structures: A manual for practical applications. London: Thomas Telford. 198 p.CrossRefGoogle Scholar
  84. Wolanski, E., Imberger, J., & Heron, M. L. (1984). Island wakes in shallow coastal waters. Journal of Geophysical Research: Oceans, 89, 10553–10569.CrossRefGoogle Scholar
  85. Wolf, J., Walkington, I. A., Holt, J., & Burrows, R. (2009). Environmental impacts of tidal power schemes. Proceedings of the Institution of Civil Engineers-Maritime Engineering, 162, 165–177.CrossRefGoogle Scholar
  86. Xodus Group Ltd. (2012). Impact of the Outshore Point wave farm on local coastal processes, report for Brough head wave farm, report no: BHWFSD.PR.EU.UK.ORKB.06REP0001.Google Scholar
  87. Yang, Z., Wang, T., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRefGoogle Scholar
  88. Zannughti, B., Martinelli, L., Castagnetti, M., Ruol, P., Kofoed, J. P., & Frigaard, P. (2010). Integration of wave energy converters in coastal protection schemes. Bilbao: Proccedings of third International conference on ocean enery.Google Scholar
  89. Zhou, J., Pan, S., & Falconer, R. A. (2014). Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model. Renewable Energy, 72, 415–427.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Simon P. Neill
    • 1
  • Peter E. Robins
    • 1
  • Iain Fairley
    • 2
  1. 1.School of Ocean SciencesBangor UniversityBangorUK
  2. 2.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations