Effects of Tidal Stream Energy Extraction on Water Exchange and Transport Timescales

  • Zhaoqing Yang
  • Taiping Wang


Over the last decade, many studies have been conducted to estimate the upper limit of the theoretical resource of tidal stream energy and its associated influence on volume flux. However, studies aimed at evaluating the effects of tidal energy extraction on water exchange and transport timescale have been limited. This chapter provides a detailed review of different methods—from analytical methods to advanced three-dimensional numerical models—for quantifying the far-field environmental impacts of tidal stream energy extraction. Case studies from an idealized tidal channel–bay system and a realistic site in the Tacoma Narrows of Puget Sound, Washington State, USA, are given to illustrate the modeling approach for assessing the impacts of tidal stream energy extraction on flushing time using a three-dimensional numerical model. Model results indicated that the change in flushing time is approximately linearly proportional to the volume flux reduction when the relative change in volume flux is small. However, the rate of change in flushing time is several times greater than that of volume flux reduction. The present study demonstrates that flushing time can be used as a unique parameter for quantifying the environmental impacts of tidal stream energy extraction on water exchange in coastal waters.


Tidal stream energy Resource assessment Flushing time Water exchange timescale Coastal circulation Tidal dynamics Numerical modeling 


  1. Alexander, K. A., Potts, T., & Wilding, T. A. (2013). Marine renewable energy and Scottish west coast fishers: Exploring impacts, opportunities and potential mitigation. Ocean and Coastal Management, 75, 1–10.CrossRefGoogle Scholar
  2. Benjamins, S., Dale, A. C., Hastie, G., Waggitt, J. J., Lea, M. A., Scott, B., et al. (2015). Confusion reigns? A review of marine megafauna interactions with tidal-stream environments. Oceanography and Marine Biology: An Annual Review, 53(53), 1–54.CrossRefGoogle Scholar
  3. Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 289–297.CrossRefGoogle Scholar
  4. Bryden, I. G., & Couch, S. J. (2007). How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy? Renewable Energy, 32, 1961–1966.CrossRefGoogle Scholar
  5. Bryden, I. G., Couch, S. I., Owen, A., & Melville, G. (2007). Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 221, 125–135.CrossRefGoogle Scholar
  6. Bryden, I. G., Grinsted, T., & Melville, G. T. (2004). Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research, 26, 198–204.CrossRefGoogle Scholar
  7. Chen, C. S., Liu, H. D., & Beardsley, R. C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159–186.CrossRefGoogle Scholar
  8. Copping, A., Sather, N. H. L., Whiting, J., Zydlewski, G., Staines, G., Gill, A., et al. (2016). Annex IV 2016 state of the science report: Environmental effects of marine renewable energy development around the world. Ocean Energy Systems, Seattle WA, USA.Google Scholar
  9. Criales, M. M., Zink, I. C., Haus, B. K., Wylie, J., & Browder, J. A. (2013). Effect of turbulence on the behavior of pink shrimp postlarvae and implications for selective tidal stream transport behavior. Marine Ecology Progress Series, 477, 161–176.CrossRefGoogle Scholar
  10. Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA. Renewable Energy, 36, 3461–3471.CrossRefGoogle Scholar
  11. Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L. D., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16, 3326–3338.CrossRefGoogle Scholar
  12. Draper, S., Houlsby, G. T., Oldfield, M. L. G., & Borthwick, A. G. L. (2010). Modelling tidal energy extraction in a depth-averaged coastal domain. IET Renewable Power Generation, 4, 545–554.CrossRefGoogle Scholar
  13. Dyer, K. R. (1973). Estuaries: A Physical Introduction. New Yrok: Wiley.Google Scholar
  14. Evans, P., Mason-Jones, A., Wilson, C., Wooldridge, C., O’Doherty, T., & O’Doherty, D. (2015). Constraints on extractable power from energetic tidal straits. Renewable Energy, 81, 707–722.CrossRefGoogle Scholar
  15. Furness, R. W., Wade, H. M., Robbins, A. M. C., & Masden, E. A. (2012). Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES Journal of Marine Science, 69, 1466–1479.CrossRefGoogle Scholar
  16. Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 461, 2563–2572.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefzbMATHGoogle Scholar
  18. Gove, B., Williams, L. J., Beresford, A. E., Roddis, P., Campbell, C., Teuten, E., et al. (2016). Reconciling biodiversity conservation and widespread deployment of renewable energy technologies in the uk. PLoS One 11.Google Scholar
  19. Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The impact of tidal stream turbines on circulation and sediment transport in muskeget channel, MA. Marine Technology Society Journal, 47, 122–136.CrossRefGoogle Scholar
  20. Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullstrom, M., et al. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS One 10.Google Scholar
  21. Hasegawa, D., Sheng, J. Y., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61, 1845–1868.CrossRefGoogle Scholar
  22. Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16, 329–341.CrossRefGoogle Scholar
  23. Karsten, R. H., McMillan, I. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 493–507.CrossRefGoogle Scholar
  24. Karsten, R., Swan, A. & Culina, J. (2013). Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 371.Google Scholar
  25. Kilcher, K., Thresher, R. & Tinnesand, H. (2016). Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part II: Tidal Energy. NREL/TP-5000-66079. National Renewable Energy Laboratory, Golden, CO.Google Scholar
  26. Kuo, A. Y., & Neilson, B. J. (1988). A modified tidal prism model for water-quality in small coastal embayments. Water Science and Technology, 20, 133–142.Google Scholar
  27. Lo Brutto, O. A., Nguyen, T., Guillou, S. S., Thiebot, J., & Gualous, H. (2016). Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renewable Energy, 99, 347–359.CrossRefGoogle Scholar
  28. Long, W., Jung, K. W., Yang, Z. Q., Copping, A., & Deng, Z. D. (2016). Coupled modeling of hydrodynamics and sound in coastal ocean for renewable ocean energy development. Marine Technology Society Journal, 50, 27–36.CrossRefGoogle Scholar
  29. Luketina, D. (1998). Simple tidal prism models revisited. Estuarine, Coastal and Shelf Science, 46, 77–84.CrossRefGoogle Scholar
  30. Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., & Piggott, M. D. (2015). Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renewable Energy, 76, 596–607.CrossRefGoogle Scholar
  31. Miller, R. G., Hutchison, Z. L., Macleod, A. K., Burrows, M. T., Cook, E. J., Last, K. S., et al. (2013). Marine renewable energy development: Assessing the Benthic footprint at multiple scales. Frontiers in Ecology and the Environment, 11, 433–440.CrossRefGoogle Scholar
  32. Myers, L., & Bahaj, A. S. (2005). Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy, 30, 1713–1731.CrossRefGoogle Scholar
  33. Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers and Geosciences, 71, 20–27.CrossRefGoogle Scholar
  34. Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRefGoogle Scholar
  35. Officer, C. B. (1976). Physical Oceanography of Estuaries (and Associated Coastal Waters). New York: Wiley.Google Scholar
  36. Pacheco, A., & Ferreira, O. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRefGoogle Scholar
  37. Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 223, 571–587.CrossRefGoogle Scholar
  38. Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36, 222–234.CrossRefGoogle Scholar
  39. Polagye, B., Malte, P., Kawasel, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 471–484.CrossRefGoogle Scholar
  40. Rao, S., Xue, H. J., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the western passage using the disc actuator theory. Ocean Dynamics, 66, 41–57.CrossRefGoogle Scholar
  41. Roc, T., Greaves, D., Thyng, K. M., & Conley, D. C. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.CrossRefGoogle Scholar
  42. Roche, R. C., Walker-Springett, K., Robins, R. E., Jones, J., Veneruso, G., Whitton, T. A., et al. (2016). Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK). Renewable Energy, 99, 1327–1341.CrossRefGoogle Scholar
  43. Sanford, L. P., Boicourt, W. C., & Rives, S. R. (1992). Model for estimating tidal flushing of small embayments. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 118, 635–654.CrossRefGoogle Scholar
  44. Schlezinger, D. R., Taylor, C. D., & Howes, B. L. (2013). Assessment of zooplankton injury and mortality associated with underwater turbines for tidal energy production. Marine Technology Society Journal, 47, 142–150.CrossRefGoogle Scholar
  45. Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.CrossRefGoogle Scholar
  46. Shields, M. A., Woolf, D. K., Grist, E. P. M., Kerr, S. A., Jackson, A. C., Harris, R. E., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRefGoogle Scholar
  47. Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 221, 147–157.CrossRefGoogle Scholar
  48. Thiebot, J., du Bois, P. B., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.CrossRefGoogle Scholar
  49. van der Molen, J., Ruardij, P., & Greenwood, N. (2016). Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: Results of a biogeochemical model. Biogeosciences, 13, 2593–2609.CrossRefGoogle Scholar
  50. VanZwieten, J., McAnally,W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2015). In-stream hydrokinetic power: review and appraisal. Journal of Energy Engineering 141.Google Scholar
  51. Vennell, R. (2010). Tuning turbines in a tidal channel. Journal of Fluid Mechanics, 663, 253–267.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Venugopal, V. & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014 (Vol. 9b).Google Scholar
  53. Wang, C. F., Hsu, M. H., & Kuo, A. Y. (2004). Residence time of the Danshuei River estuary. Taiwan. Estuarine Coastal and Shelf Science, 60, 381–393.CrossRefGoogle Scholar
  54. Wang, T. P., Yang, Z. Q., & Copping, A. (2015). A modeling study of the potential water quality impacts from in-stream tidal energy extraction. Estuaries and Coasts, 38, S173–S186.CrossRefGoogle Scholar
  55. Ward, J., Schultz, I., Woodruff, D., Roesijadi, G. & Copping, A. (2010). Assessing the effects of marine and hydrokinetic energy development on marine and estuarine resources. Oceans 2010.Google Scholar
  56. Williamson, B. J., Blondel, P., Armstrong, E., Bell, P. S., Hall, C., Waggitt, J. J., et al. (2016). A Self-Contained subsea platform for acoustic monitoring of the environment around marine renewable energy devices-field deployments at wave and tidal energy sites in Orkney, Scotland. IEEE Journal of Oceanic Engineering, 41, 67–81.CrossRefGoogle Scholar
  57. Wood, T. (1979). Modification of existing simple segmented tidal prism models of mixing in estuaries. Estuarine and Coastal Marine Science, 8, 339–347.CrossRefGoogle Scholar
  58. Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRefGoogle Scholar
  59. Yang, Z. Q., & Khangaonkar, T. (2010). Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: From tide flats to estuaries and coastal waters. Ocean Dynamics, 60, 1621–1637.CrossRefGoogle Scholar
  60. Yang, Z. Q., & Wang, T. P. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38, S187–S202.CrossRefGoogle Scholar
  61. Yang, Z. Q., Wang, T. P., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRefGoogle Scholar
  62. Yang, Z. Q., Wang, T. P., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratorySeattleUSA

Personalised recommendations