Skip to main content

Principal Way of Life Origin in the Universe

  • Chapter
  • First Online:
Thermodynamic Inversion

Abstract

The principal thermodynamic way of initial living systems emergence from prebiotic (micro)systems has been substantiated. It includes some universal aspects relevant to the origin of life on Earth and other planets. The theories of dissipative structures and synergetics are in the background of the author’s approach that consisted of the bistate and the inversion hypotheses. The bistate hypothesis considers balanced oscillations of a non-living prebiotic (micro)system around the bifurcation point as the intermediate position between non-life and life. Such oscillating bistate prebiotic system tends to dichotomy and characterizes by the paradoxical state “stabilized instability.” The thermodynamic inversion in a bistate prebiotic microsystem following its transformation into primordial living unit—probiont—is considered in the framework of the inversion hypothesis . The inversion begins with the extraordinary high contributions of free energy and information to the system that prevail over the contribution of entropy and launches initial biological process. Both hypotheses are verified by some mathematical models and basic facts taken from biological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baltscheffsky H (1997) Major “anastrophes” in the origin and early evolution of biological energy conversion. J Theor Biol 187:495–501

    Article  Google Scholar 

  • Bresler SE (1975) Theory of misrepair mutagenesis. Mutat Res 29:467–472

    Article  Google Scholar 

  • Choi S, Choi J, Landig R, Kucsko G, Zhou H, Isoya J, Jelezko F, Onoda S, Sumiya H, Khemani V, Keyserlingk C, Yao NY, Demler E, Lukin MD (2016) Observation of discrete time-crystalline order in a disordered dipolar many-body system. arXiv:1610.08057v1 [quant-ph] 25 Oct 2016

  • Ebeling W, Engel A, Feistel R (1990) Physik der Evolutionsprozesse (Physics of evolution). Akademie-Verlag, Berlin (in German)

    MATH  Google Scholar 

  • Feistel R, Ebeling W (2011) Physics of self-organization and evolution. Wiley, VCH

    Book  MATH  Google Scholar 

  • Frisman EY, Neverova GP, Kulakov MP, Zhigalskii OA (2015) Multimode phenomenon in the population dynamics of animals with short live cycles. Doklady Biol Sci 460:42–47

    Google Scholar 

  • Grant V (1977) Organismic Evolution. Freeman and Co, San Francisco

    Google Scholar 

  • Haken H (1978) Synergetics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Henttonen H, Wallgren H (2001) Small rodent dynamics and communities in the birch forest zone of Northern Fennoscandia: Nordic mountain birch ecosystems. Parthenon, New York

    Google Scholar 

  • Huxley IS (1942) Evolution: the modern synthesis. George Allen and Unwin, London

    Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Ostbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhmy T, Stenseth N (2008) Linking climate change to lemming cycles. Nature 456:93–97

    Article  Google Scholar 

  • Kompanichenko VN (2004) Systemic approach to the origin of life. Front Perspect 13(1):22–40

    Google Scholar 

  • Kompanichenko VN (2008) Three stages of the origin-of-life process: bifurcation, stabilization and inversion. Int J Astrobiol 7(1):27–46

    Article  Google Scholar 

  • Kompanichenko VN (2009) Changeable hydrothermal media as a potential cradle of life on a planet. Planet Space Sci 57:468–476

    Article  Google Scholar 

  • Kompanichenko VN (2012) Inversion concept of the origin of life. Orig Life Evol Biosph 42(2–3):153–178

    Article  Google Scholar 

  • Kuznetsov AP, Savin AV, Sedova YuV, Tyuryukina LV (2012) Bifurkatsii otobrazhenii (Bifurcation of images). Nauka, Saratov (in Russian)

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New York

    MATH  Google Scholar 

  • Pham P, Bertram JG, O’Donnell M, Woodgate R, Goodman MF (2001) A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 408:366–370

    Article  Google Scholar 

  • Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

    Article  MathSciNet  Google Scholar 

  • Pivovarova AS, Steryakov AA (2011) Leader competition in biological and social systems. Vestnik of the Samara State Aerospace University 1(25):192–203 (in Russian)

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos. Bantam, New York

    Google Scholar 

  • Schrodinger E (1944) What is life? The physical aspect of the living cell. Lectures at the Trinity College, Dublin

    Google Scholar 

  • Selye H (1974) Stress without distress. JB Lippincott Company, Philadelfia

    Google Scholar 

  • Sumpter DJT (2006) Principles of collective animal behavior. Phil Trans R Soc B 361:5–22

    Article  Google Scholar 

  • Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Let 75(6):1226–1229

    Article  MathSciNet  Google Scholar 

  • Wong JTF (1988) Evolution of the genetic code. Microbiol Sci 5(6):174–181

    Google Scholar 

  • Wong JTF, Xue H (2002) Self-perfecting evolution of heteropolymer building blocks and sequences as the basis for life. In: Palyi G, Zucci C, Caglioti L (eds) Fundamentals of Life. Elsevier, Paris, pp 141–152

    Google Scholar 

  • Yao NY, Potter AC, Potirniche I-D, Vishwanath A (2017) Discrete time crystals: rigidity, criticality, and realizations. Phys Rev Lett 118, 030401—Published 18 Jan 2017

    Google Scholar 

  • Zhang HT, Wang H, Chen MZQ, Zhow T, Zhow C (2009) Effective leadership in competition. arXiv:0907.1317v1 [physics.soc-ph] 7 July 2009, p 5

  • Zhang J, Hess PW, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I-D, Potter AC, Vishwanath A, Yao NY, Monroe C (2016) Observation of a discrete time crystal. arXiv:1609.08684v1 [quant-ph] 27 Sep 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Kompanichenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kompanichenko, V.N. (2017). Principal Way of Life Origin in the Universe. In: Thermodynamic Inversion. Springer, Cham. https://doi.org/10.1007/978-3-319-53512-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53512-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53510-4

  • Online ISBN: 978-3-319-53512-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics