Advertisement

Open image in new windowRock Avalanche Sedimentology—Recent Progress

  • Anja Dufresne
Conference paper

Abstract

Since Yarnold and Lombard (Field trip guidebook—Pacific section, 9–31, 1989) presented a systematic facies model for ancient rock avalanche deposits in dry climates, more landslide researchers have organized observations from one or more case studies into general sedimentological descriptions and facies models (references are provided in the main text). These recent advances show that rock avalanches are multi-facies deposits. Retention of source stratigraphy and a general three-part division of a coarse-grained, largely unfragmented upper part or carapace, a finer-grained body of diverse sedimentology, and a basal facies influenced by interactions with runout path materials are the most common observations. The greatest variation in the grain size distribution and comminution intensity occurs between the bouldery carapace and the matrix-supported interior, i.e. the body facies which constitutes the largest deposit volume. Most striking, but not surprising, is the highly heterogeneous nature of the body facies with a number of sub-facies and discontinuity layers, which must reflect highly heterogeneous states of stress within the deforming granular mass. These features within the body facies are the most important for studying those emplacement dynamics that are not affected by boundary conditions, such as runout path sediments. Where the base is exposed, a characteristic basal facies with substrate injections and/or a basal mixed zone and/or deformation features can be found, usually above a very sharp contact to the underlying, disrupted sediments. The overall commonalities of internal rock avalanche features indicate that some basic processes must act universally during their emplacement. The value of these sedimentological models and descriptions lies in contrasting universally valid features with those that are a function of unique geological, topographic, or structural settings, or which might suggest different/additional emplacement dynamics of a specific deposit.

Keywords

Rock avalanche Sedimentology Depositional facies 

Notes

Acknowledgements

This research was funded by the German Research Foundation grant DU1294/2-1; project “Long-runout landslides: the influence of lithology on comminution, (micro-) structures, morphology, and runout”.

References

  1. Abdrakhmatov K, Strom AL (2006) Dissected rockslide and rock avalanche deposits; Tien Shan, Kyrgyzstan. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:551–570Google Scholar
  2. Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissen-schaftliche Vereinshefte 25:230pGoogle Scholar
  3. Adushkin VV (2006) Mobility of rock avalanches triggered by underground nuclear explosions. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:267–284Google Scholar
  4. Blair TC (1999) Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California. Can J Earth Sci 26:855–870CrossRefGoogle Scholar
  5. Brideau MA, Procter JN (2015) Discontinuity orientation in jigsaw clasts from volcanic debris avalanche deposits and implications for emplacement mechanism. GeoQuébec, 20–23 Sept 2015, Abstract 614Google Scholar
  6. Capra L, Macías JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior, and implications for hazard assessment. J Volcanol Geoth Res 113(1–2):81–110CrossRefGoogle Scholar
  7. Charrière M, Humair F, Froese C, Jaboyedoff M, Pedrazzini A, Longchamp C (2015) From the source area to the deposit: collapse, fragmentation and propagation of the Frank Slide. GSA Bull 128(1–2):332–351Google Scholar
  8. Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112:23pCrossRefGoogle Scholar
  9. Davies TR, McSaveney MJ (2004) Dynamic fragmentation in landslides: application to natural dam stability. In: Evans SG, Strom AL (eds) Abstract volume, NATO advanced research workshop: security of natural and artificial rockslide dams. Kyrgyzstan, Bishkek, pp 7–13Google Scholar
  10. Davies TR, McSaveney MJ, Kelfoun K (2010) Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance. Bull Volc 72(8):933–944CrossRefGoogle Scholar
  11. Davies TR, McSaveney MJ (2012) Mobility of long-runout rock avalanches. In: Clague JJ, Stead D (eds) Landslides—types, mechanisms, and modeling. Cambridge University Press, UK, pp 50–59CrossRefGoogle Scholar
  12. Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path material and comparison to rock avalanche events. Earth Surf Proc Land 37:1527–1541CrossRefGoogle Scholar
  13. Dufresne A, Davies TR, McSaveney MJ (2009) Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand. Earth Surf Proc Land 35:190–201Google Scholar
  14. Dufresne A, Bösmeier A, Prager C (in press) Rock avalanche sedimentology—case study and review. Earth-Sci RevGoogle Scholar
  15. Dufresne A, Dunning S (submitted) Process-dependence of grain size distributions in rock avalanche depositsGoogle Scholar
  16. Dufresne A, Prager C, Bösmeier A (2016) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies at the Tschirgant deposit (Tyrol, Austria). Earth Surf Proc Land 41(5):587–602CrossRefGoogle Scholar
  17. Dunning S (2004) Rock avalanches in high mountains. PhD thesis, University of Luton, UKGoogle Scholar
  18. Dunning S (2006) The grain size distribution of rock avalanche deposits in valley-confined settings. Italian J Eng Geol Environ, Spec Issue 1:117–121Google Scholar
  19. Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds) Natural and artificial rockslide dams. Lect Notes Earth Sci 33:479–498Google Scholar
  20. Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12(1):15–46Google Scholar
  21. Friedmann SJ (1997) Rock-avalanche elements of the Shadow Valley Basin, Eastern Mojave Desert, California: processes and problems. J Sediment Res, Sect A: Petrol Process 67(5):792–804Google Scholar
  22. Gates WCB (1987) The fabric of rock avalanche deposits. Bull Assoc Eng Geol 24(3):389–402Google Scholar
  23. Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide-debris avalanche in cohesive soils at Pink Mountain, Northeastern British Columbia, Canada. Eng Geol 83:64–75CrossRefGoogle Scholar
  24. Genevois R, Armento C, Tecca PR (2006) Failure mechanisms and runout behavious of three rock avalanches in the North-eastern Italian Alps. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:407–427Google Scholar
  25. Gruber A, Strauhal T, Prager C, Reitner JM, Brandner R, Zangerl C (2009) Die “Butterbichl-Gleitmasse”—eine fossile Massenbewegung am Südrand der Nördlichen Kalkalpen (Tirol, Österreich). Swiss Bulletin für angewandte Geologie 12(1–2):103–134Google Scholar
  26. Heim A (1932) Bergsturz und Menschenleben. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 77:218pGoogle Scholar
  27. Hermanns RL, Blikra LH, Naumann M, Nilsen B, Panthi KK, Stromeyer D, Longva O (2006) Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng Geol 83:94–108CrossRefGoogle Scholar
  28. Hewitt K (2001) Catastrophic rockslides and the geomorphology of the Hunza and Gilgit river valleys, Karakoram Himalaya. Erdkunde 55:72–93CrossRefGoogle Scholar
  29. Hewitt K (2009) Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh Massif, Upper Indus basin, northern Pakistan. Quatern Sci Rev 28(11–12):1055–1069CrossRefGoogle Scholar
  30. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Sci Rev 87:1–38CrossRefGoogle Scholar
  31. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252CrossRefGoogle Scholar
  32. Imre B, Laue J, Springman SM (2010) Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge. Granular Matter 12:267–285CrossRefGoogle Scholar
  33. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160CrossRefGoogle Scholar
  34. Johnson B (1978) Blackhawk landslide, California, US. In: Voight B (ed) Rockslides and avalanches: natural phenomena, vol 1. Elsevier, Amsterdam, pp 481–504CrossRefGoogle Scholar
  35. McSaveney MJ, Davies TR (2006) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer, Heidelberg, pp 113–133Google Scholar
  36. Medley EW (1994) The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks). PhD thesis, University of California, BerkeleyGoogle Scholar
  37. Pedrazzini A, Jaboyedoff M, Loye A, Derron MH (2013) From deep-seated slope deformation to rock avalanche: destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics 605:149–168CrossRefGoogle Scholar
  38. Pollet N, Schneider J-LM (2004) Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth Planet Sci Lett 221(1–4):433–448CrossRefGoogle Scholar
  39. Prager C (2010) Geologie, Alter und Struktur des Fernpass Bergsturzes und tiefgründiger Massenbewegungen in seiner Umgebung (Tirol, Österreich). PhD thesis, Univeristät Innsbruck, AustriaGoogle Scholar
  40. Reznichenko NV, Davies TR, Shulmeister J, Larsen SH (2012) A new technique for identifying rock avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology 49(4):319–322CrossRefGoogle Scholar
  41. Robinson TR, Davies TR, Reznichenko NV, De Pascale GP (2015) The extremely long-runout rock avalanche in the Trans Altai range, Pamir Mountains, southern Kyrgyzstan. Landslides 12:523–535CrossRefGoogle Scholar
  42. Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA Bull 127(1–2):3–18CrossRefGoogle Scholar
  43. Schoeman C (2016) The Brusson rock avalanche, northwestern Italian Alps. MSc Thesis, University of Freiburg, Germany, 52 ppGoogle Scholar
  44. Shugar D, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58(7):1762–1783CrossRefGoogle Scholar
  45. Strom AL (1994) Mechanism of stratification and abnormal crushing of rockslide deposits. 7th international IAEG congress, pp 1287–1296Google Scholar
  46. Strom AL (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:305–328Google Scholar
  47. Vallance JW, Siebert L, Rose WI Jr, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geoth Res 66(1–4):337–355CrossRefGoogle Scholar
  48. Wassmer P, Schneider J-L, Pollet N, Schmitter-Voirin C (2004) Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology 61:3–17CrossRefGoogle Scholar
  49. Weidinger JT, Korup O (2009) Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—implications for extreme events in mountain relief destruction. Geomorphology 103(1):57–65CrossRefGoogle Scholar
  50. Weidinger JT, Korup O, Munack H, Alternberger U, Dunning S, Tippelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73CrossRefGoogle Scholar
  51. Yarnold JC, Lombard JP (1989) Facies model for large rock avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Field trip guidebook—Pacific section. Soc Econ Paleontol Mineral 62:9–31Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.RWTH Aachen University, Engineering Geology and HydrogeologyAachenGermany

Personalised recommendations