Skip to main content

Remote Sensing Techniques in Landslide Mapping and Monitoring, Keynote Lecture

Abstract

The current availability of highly developed remote sensing technologies in the field of landslide detection, mapping and monitoring allows for rapid and easily updatable data acquisitions, improving the traditional investigation capabilities, even in hazardous or inaccessible areas, while granting at the same time the safety of the operators during the fieldwork. In this work various application of remote sensing techniques for landslide detection, mapping and early warning, from spaceborne to ground-based platforms are described. Among earth observation (EO) techniques in the last decades optical and radar images are very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems (currently in the order of magnitude of tens of centimeters), and by the new generations of synthetic aperture radar (SAR) sensors designed for interferometric applications, with revisiting times of few days. At the same time in the recent years, ground-based remote sensing techniques have undergone a significant increase of usage, thanks to their technological development and quality data improvement, in terms of spatial resolution and accuracy, fast measurement and processing times, portability and cost-effectiveness of the acquiring instruments. In this paper, the potential of space-borne imaging techniques, ground-based remote sensing methods and the effectiveness of their synergic use in the field of landslide analysis is explored by reviewing their state of the art, and by analyzing various case studies, characterized by different slope instability processes, spatial scales and emergency management phases. After assessing the advantages and limitations of the proposed methods, further fields of applications are evaluated.

Keywords

  • Landslides
  • Remote sensing
  • SAR
  • Landslide mapping
  • Landslide monitoring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-53487-9_1
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-53487-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88:136–148

    CrossRef  Google Scholar 

  • Abellán A, Vilaplana JM, Calvet J, Garcıa-Selles D, Asensio E (2011) Rockfall monitoring by terrestrial laser scanning—case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat Hazards Earth Syst Sci 11:829–841

    CrossRef  Google Scholar 

  • Adam N, Rodriguez-Gonzalez F, Parizzi A, Liebhart W (2011) Wide area persistent scatterer interferometry. In: 2011 IEEE international in geoscience and remote sensing symposium (IGARSS), pp 1481–1484

    Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the San Fratello case study. Geomorphology 223:45–60

    CrossRef  Google Scholar 

  • Bardi F, Raspini F, Ciampalini A, Kristensen L, Rouyet L, Lauknes TR, Frauenfelder R Casagli N (2016) Space-borne and ground-based InSAR data integration: the Åknes test site. Remote Sens 8(3):237

    Google Scholar 

  • Baroň I, Bečkovský D, Míča L (2012) Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 11(1):15–27

    Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferogram. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    CrossRef  Google Scholar 

  • Berardino P, Costantini M, Franceschetti G, Iodice A, Pietranera L, Rizzo V (2003) Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng Geol 68(1–2):31–51

    CrossRef  Google Scholar 

  • Berti M, Corsini A, Franceschini S, Iannacone JP (2013) Automated classification of persistent scatterers interferometry time series. Nat Hazards Earth Syst Sci 13(8):1945–1958

    CrossRef  Google Scholar 

  • Bianchini S, Cigna F, Righini G, Proietti C, Casagli N (2012) Landslide hotspot mapping by means of persistent scatterer interferometry. Environ Earth Sci 67(4):1155–1172

    CrossRef  Google Scholar 

  • Bianchini S, Pratesi F, Nolesini T, Casagli N (2015) Building deformation assessment by means of Persistent Scatterer Interferometry analysis on a landslide-affected area: the Volterra (Italy) case study. Remote Sens 7(4):4678–4701

    CrossRef  Google Scholar 

  • Birky AK (2001) NDVI and a simple model of deciduous forest seasonal dynamics. Ecol Model 143:43–58

    CrossRef  Google Scholar 

  • Brunetti MT, Xiao Z, Komatsu G, Peruccacci S, Guzzetti F (2015) Terrestrial and extraterrestrial landslide size statistics. In: European planetary science congress 2015, 27 Sept–2 Oct 2015, Nantes, France. Copernicus. org/EPSC2015, id. EPSC2015 776 (10: 776)

    Google Scholar 

  • Calvari S, Intrieri E, Di Traglia F, Bonaccorso A, Casagli N, Cristaldi A (2016) Monitoring crater-wall collapse at open-conduit volcanoes: the case study of the 12 January 2013 event at Stromboli. Bull Volcanol 78(39):1–16

    Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45:907–919

    CrossRef  Google Scholar 

  • Canuti P, Casagli N, Catani F, Falorni G, Farina P (2007) Integration of remote sensing techniques in different stages of landslide response. In: Progress in landslide science. Springer, Berlin, pp 251–260

    Google Scholar 

  • Casagli N, Fanti R, Nocentini M, Righini G (2005) Assessing the capabilities of VHR satellite data for debris flow mapping in the Machu Picchu area (C101-1). In: Landslides. Springer, Berlin, pp 61–70

    Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301

    CrossRef  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low-and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112(1):29–42

    CrossRef  Google Scholar 

  • Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66(1):119–131

    CrossRef  Google Scholar 

  • Cheng KS, Wei C, Chang SC (2004) Locating landslides using multi-temporal satellite images. Adv Space Res 33:296–301

    CrossRef  Google Scholar 

  • Chini M, Cinti FR, Stramondo S (2011) Co-seismic surface effects from very high resolution panchromatic images: the case of the 2005 Kashmir (Pakistan) earthquake. Nat Hazards Earth Syst Sci 11:931–943

    CrossRef  Google Scholar 

  • Ciampalini A, Garfagnoli F, Antonielli B, Del Ventisette C, Moretti S (2012) Photo-lithological map of the southern flank of the Tindouf Basin (Western Sahara). J Maps 8:453–464

    CrossRef  Google Scholar 

  • Ciampalini A, Bardi F, Bianchini S, Frodella W, Del Ventisette C, Moretti S, Casagli N (2014) Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int J Appl Earth Obs Geoinf 33:166–180

    CrossRef  Google Scholar 

  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, Di Traglia F, Moretti S, Proietti C, Pagliara P, Onori R, Corazza A, Duro A, Basile G, Casagli N (2015a) Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase. Geomorphology 249:103–118

    CrossRef  Google Scholar 

  • Ciampalini A, Raspini F, Moretti S (2015b) Landslide back monitoring and forecasting by using PSInSAR technique: the case of Naso (Sicily, Southern Italy). Atti Soc Tosc Sci Nat Mem Ser A 122. doi:10.2424/ASTSN.M.2015.16

  • Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199

    CrossRef  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Landslides: investigation and mitigation, Sp. Rep. 247, Transportation Research Board, National Research Council, Turner AK, Schuster RL, National Academy Press, Washington DC, USA, pp 36–75

    Google Scholar 

  • Del Ventisette C, Intrieri E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat Hazards Earth Syst Sci 11(9):2483–2495

    CrossRef  Google Scholar 

  • Del Ventisette C, Garfagnoli F, Ciampalini A, Battistini A, Gigli G, Moretti S, Casagli N (2012) An integrated approach to the study of catastrophic debris-flows: geological hazards and human influence. Nat Hazards Earth Syst Sci 12:2907–2922

    CrossRef  Google Scholar 

  • Di Traglia F, Del Ventisette C, Rosi M, Mugnai F, Intrieri E, Moretti S, Casagli N (2013) Ground-based InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova 25(3):192–198

    CrossRef  Google Scholar 

  • Di Traglia F, Intrieri E, Nolesini T, Bardi F, Del Ventisette C, Ferrigno F, Frangioni S, Frodella W, Gigli G, Lotti A, Tacconi Stefanelli C, Tanteri L, Leva D, Casagli N (2014a) The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity. Bull Volcanol 76(2):1–18

    CrossRef  Google Scholar 

  • Di Traglia F, Nolesini T, Intrieri E, Mugnai F, Leva D, Rosi M, Casagli N (2014b) Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci Rev 139:317–335

    CrossRef  Google Scholar 

  • Eyers R, Moore JM, Hervás J, Liu JG (1998) Integrated use of Landsat TM and SPOT panchromatic imagery for landslide mapping: case histories from southeast Spain. The Geological Society, Engineering Geology Special Publications, London, Jan 1, pp 133–140

    Google Scholar 

  • Farina P, Casagli N, Ferretti A (2008) Radar-interpretation of InSAR measurements for landslide investigations in civil protection practices. In: Proceedings of 1st North American landslide conference, Vail, Colorado, pp 272–283

    Google Scholar 

  • Farina P, Leoni L, Babboni F, Coppi F, Mayer L, Ricci P (2011) IBIS-M, an innovative radar for monitoring slopes in open-pit mines. In: Proceedings, slope stability 2011: international symposium on rock slope stability in open pit mining and civil engineering, Vancouver (Canada), 18–21 Sept

    Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665

    CrossRef  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using Permanent Scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212

    CrossRef  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    CrossRef  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR™. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    CrossRef  Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R, Rossi R, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70

    CrossRef  Google Scholar 

  • Franceschi M, Teza G, Preto N, Pesci A, Galgaro A, Girardi S (2009) Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J Photogram 64:522–528

    CrossRef  Google Scholar 

  • Frodella W, Morelli S, Fidolini F, Pazzi V, Fanti R (2014a) Geomorphology of the Rotolon landslide (Veneto Region, Italy). J Maps 10(3):394–401

    CrossRef  Google Scholar 

  • Frodella W, Morelli S, Gigli G, Casagli N (2014b) Contribution of infrared thermography to the slope instability characterization. In: Proceedings of world landslide forum 3, vol 4, 2–6 June 2014, Beijing, China, pp 144–147

    Google Scholar 

  • Frodella W, Fidolini F, Morelli S, Pazzi F (2015) Application of infrared thermography for landslide mapping: the Rotolon DSGDS case study. Rend Online Soc Geol Ital 35:144–147

    Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    CrossRef  Google Scholar 

  • Frohlich C, Mettenleiter M (2004) Terrestrial laser scanning: new perspectives in 3D surveying. In: Thies M, Koch B, Spiecker H, Weinacker H (eds) Laser scanners for forest and landscape assessment, 36. International archives of photogrammetry, remote sensing and spatial information sciences, p 8/W2

    Google Scholar 

  • Fruneau B, Achache J, Delacourt C (1996) Observation and modeling of the Saint-Etienne-de-Tine´e landslide using SAR interferometry. Tectonophysics 265

    Google Scholar 

  • García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11(2):225–246

    CrossRef  Google Scholar 

  • Ghiglia DC, Romero LA (1994) Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am 11(1):107–117

    CrossRef  Google Scholar 

  • Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198

    CrossRef  Google Scholar 

  • Gigli G, Mugnai F, Leoni L, Casagli N (2009) Analysis of deformations in historic urban areas using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1759–1761

    CrossRef  Google Scholar 

  • Gigli G, Frodella W, Garfagnoli F, Mugnai F, Morelli S, Menna F, Casagli N (2014a) 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 11(1):131–140

    CrossRef  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2014b) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rockfall susceptibility scenarios. Landslides 11(1):1–14

    CrossRef  Google Scholar 

  • Guzzetti F, Mondini A, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    CrossRef  Google Scholar 

  • Hanssen RS (2005) Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. Int J Appl Earth Obs Geoinform 6:253–260

    CrossRef  Google Scholar 

  • Herrera G, Davalillo JC, Mulas J, Cooksley G, Monserrat O, Pancioli V (2009) Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587–1598

    CrossRef  Google Scholar 

  • Herrera G, Notti D, Garcıa-Davalillo JC, Mora O, Cooksley G, Sanchez M, Arnaud A, Crosetto M (2011) Landslides analysis with C- and X-band satellite SAR data: the Portalet landslide area. Landslides 8:195–206

    CrossRef  Google Scholar 

  • Hervas J, Barredo JI, Rosin PL, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54:63–75

    CrossRef  Google Scholar 

  • Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304(5679):1952–1955

    CrossRef  Google Scholar 

  • Hooper A, Zebker HA, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23)

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147–148:124–136

    CrossRef  Google Scholar 

  • Intrieri E, Di Traglia F, Del Ventisette C, Gigli G, Mugnai F, Luzi G, Casagli N (2013) Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): integration of GB-InSAR and geomorphological observations. Geomorphology 201:60–69

    CrossRef  Google Scholar 

  • Intrieri E, Gigli G, Nocentini M, Lombardi L, Mugnai F, Casagli N (2015) Sinkhole monitoring and early warning: an experimental and successful GB-InSAR application. Geomorphology 241:304–314

    CrossRef  Google Scholar 

  • Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33(2):183–207

    CrossRef  Google Scholar 

  • Kimura H, Yamaguchi Y (2000) Detection of landslide areas using satellite radar interferometry. Photogram Eng Remote Sens 66(3):337–344

    Google Scholar 

  • Kjekstad O, Highland L (2009) Economic and social impacts of landslides. In: Landslides–disaster risk reduction. Springer, Berlin Heidelberg, pp 573–587

    Google Scholar 

  • Kurtz C, Stumpf A, Malet JP, Gançarski P, Puissant A, Passat N (2014) Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogram Remote Sens 87:122–136

    CrossRef  Google Scholar 

  • Lamri T, Djemaï S, Hamoudi M, Zoheir B, Bendaoud A, Ouzegane K, Amara M (2016) Satellite imagery and airborne geophysics for geologic mapping of the Edembo area, Eastern Hoggar (Algerian Sahara). J African Earth Sci 115:143–158

    CrossRef  Google Scholar 

  • Lauknes TR, Piyush Shanker A, Dehls JF, Zebker HA, Henderson IHC, Larsen Y (2010) Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ 114:2097–2109

    CrossRef  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. John Wiley & Sons

    Google Scholar 

  • Lin CY, Lo HM, Chou WC, Lin WT (2004) Vegetation recovery assessment on the Jou-Jou Mountain landslide area caused by the 921 earthquake in the Central Taiwan. Ecol Model 176:75–81

    CrossRef  Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. Geosci Remote Sens Lett 8:701–705

    CrossRef  Google Scholar 

  • Lu P, Casagli N, Catani F, Tofani V (2012) Persistent Scatterers Interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens 33(2):466–489

    CrossRef  Google Scholar 

  • Ma HR, Cheng X, Chen L, Zhang H, Xiong H (2016) Automatic identification of shallow landslides based on Worldview2 remote sensing images. J Appl Remote Sens 10(1):016008. doi:10.1117/1.JRS.10.016008

    CrossRef  Google Scholar 

  • Maldague X (2001) Theory and practice of infrared technology for non destructive testing. John-Wiley & Sons, p 684

    Google Scholar 

  • Mantovani F, Soeters R, van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225

    CrossRef  Google Scholar 

  • Marcelino EV, Formaggio AR, Maeda EE (2009) Landslide inventory using image fusion techniques in Brazil. Int J Appl Earth Obs Geoinf 11:181–191

    CrossRef  Google Scholar 

  • Martha TR, Kerle N (2012) Creation of event-based landslide inventory from panchromatic images by object oriented analysis. In: Proceedings of the 4th GEOBIA, May 7–9, 2012. Rio de Janeiro, Brazil, p 053

    Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterizing spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    CrossRef  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500

    CrossRef  Google Scholar 

  • Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492

    CrossRef  Google Scholar 

  • Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountain environments. Remote Sens Environ 98:284–303

    CrossRef  Google Scholar 

  • Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens Environ 115:1743–1757

    CrossRef  Google Scholar 

  • Mondini AC, Viero A, Cavalli M, Marchi L, Herrera G, Guzzetti F (2014) Comparison of event landslide inventories: the Pogliaschina catchment test case. Italy Nat Hazards Earth Syst Discuss 2:1093–1125

    CrossRef  Google Scholar 

  • Morelli S, Segoni S, Manzo G, Ermini L, Catani F (2012) Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy. Appl Geogr 34:205–218

    CrossRef  Google Scholar 

  • Mwaniki MV, Agutu NO, Mbaka JG, Ngigi TG, Waithaka EH (2015) Landslide scar/soil erodibility mapping using Landsat TM/ETM+ bands 7 and 3 normalised difference index: a case study of central region of Kenya. Appl Geogr 64:108–120

    CrossRef  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzer R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    CrossRef  Google Scholar 

  • Parker AL, Biggs J, Lu Z (2014) Investigating long-term subsidence at Medicine Lake Volcano, CA, using multitemporal InSAR. Geophys J Int 199:844–859

    CrossRef  Google Scholar 

  • Pazzi V, Morelli S, Pratesi F, Sodi T, Valori L, Gambacciani L, Casagli N (2016) Assessing the safety of schools affected by geo-hydrologic hazards: the geohazard safety classification (GSC). Int J Disaster Risk Reduction 15:80–93

    CrossRef  Google Scholar 

  • Petley DN (2012) The analysis of global landslide risk through the creation of a database of world-wide landslide fatalities. Geology 40(10):927–930

    CrossRef  Google Scholar 

  • Petley DN, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a database of world-wide landslide fatalities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis Group, London. ISBN041538043X

    Google Scholar 

  • Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2003) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24(6):1385–1391

    CrossRef  Google Scholar 

  • Pratesi F, Nolesini T, Bianchini S, Leva D, Lombardi L, Fanti R, Casagli N (2015) Early warning GB-InSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):1753–1762

    CrossRef  Google Scholar 

  • Raspini F, Ciampalini A, Del Conte S, Lombardi L, Nocentini M, Gigli G, Ferretti A, Casagli N (2015a) Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy). Remote Sens 7(11):14576–14596

    CrossRef  Google Scholar 

  • Raspini F, Ciampalini A, Bianchini S, Bardi F, Di Traglia F, Basile G, Moretti S (2015b) Updated landslide inventory of the area between the Furiano and Rosmarino creeks (Sicily, Italy). J Maps 1–10

    Google Scholar 

  • Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33(7):2068–2096

    CrossRef  Google Scholar 

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    CrossRef  Google Scholar 

  • Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6(10):9600–9652

    CrossRef  Google Scholar 

  • Senay GB, Elliott RL (2000) Combining AVHRR-NDVI and land use data to describe temporal and spatial dynamics of vegetation. For Ecol Manage 128:83–91

    CrossRef  Google Scholar 

  • Severin J, Eberhardt E, Leoni L, Fortin S (2014) Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Eng Geol 181:202–211

    CrossRef  Google Scholar 

  • Singhroy V (1995) SAR integrated techniques for geohazard assessment. Adv Space Res 15:67–78

    CrossRef  Google Scholar 

  • Singhroy V, Mattar KE, Gray AL (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21(3):465–476

    CrossRef  Google Scholar 

  • Slob S, Hack HRGK, Feng Q, Röshoff K, Turner AK (2007) Fracture mapping using 3D laser scanning techniques. In: Proceedings of the 11th congress of the international society for rock mechanics, vol 1. Lisbon, Portugal, pp 299–302

    Google Scholar 

  • Spampinato L, Calvari S, Oppenheimer C, Boschi E (2011) Volcano surveillance using infrared cameras. Earth Sci Rev 106:63–91

    CrossRef  Google Scholar 

  • Squarzoni C, Galgaro A, Teza G, Acosta CAT, Pernito MA, Bucceri N (2008) Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophysical Research Abstracts 10, EGU2008-A-09254, EGU General Assembly 2008

    Google Scholar 

  • Tapete D, Casagli N, Luzi G, Fanti R, Gigli G, Leva D (2013) Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J Archaeol Sci 40(1):176–189

    CrossRef  Google Scholar 

  • Tapete D, Morelli S, Fanti R, Casagli N (2015) Localising deformation along the elevation of linear structures: an experiment with space-borne InSAR and RTK GPS on the Roman Aqueducts in Rome, Italy. Appl Geogr 58:65–83

    CrossRef  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 1(68):15–30

    CrossRef  Google Scholar 

  • Teza G, Atzeni C, Balzani M, Galgaro A, Galvani G, Genevois R, Luzi G, Mecatti D, Noferini L, Pieraccini M, Silvano S, Uccelli F, Zaltron N (2008) Ground-based monitoring of high-risk landslides through joint use of laser scanner and interferometric radar. Int J Remote Sens 29(16):4735–4756

    CrossRef  Google Scholar 

  • Teza G, Marcato G, Castelli E, Galgaro A (2012) IRTROCK: a matlab toolbox for contactless recognition of surface and shallow weakness traces of a rock mass by infrared thermography. Comput Geosci 45:109–118

    CrossRef  Google Scholar 

  • Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013a) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13(2):299–309

    CrossRef  Google Scholar 

  • Tofani V, Raspini F, Catani F, Casagli N (2013b) Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5(3):1045–1065

    CrossRef  Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375

    CrossRef  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    CrossRef  Google Scholar 

  • Voegtle T, Schwab I, Landes T (2008) Influences of different materials on the measurements of a terrestrial laser scanner (TLS). In: Proceedings of the XXI congress, the international society for photogrammetry and remote sensing, vol 37, ISPRS2008, pp 1061–1066

    Google Scholar 

  • WP/WLI (International Geotechnical Societies = UNESCO Working Party on World Landslide Inventory) (1993) Multilingual landslide glossary. BiTech Publishers Ltd

    Google Scholar 

  • Wu JH, Lin HM, Lee DH, Fang SC (2005) Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng Geol 80:164

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Tofani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Casagli, N. et al. (2017). Remote Sensing Techniques in Landslide Mapping and Monitoring, Keynote Lecture. In: Mikoš, M., Arbanas, Ž., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53487-9_1

Download citation