Skip to main content

Using Cluster Barycenters for the Generalized Traveling Salesman Problem

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 557)

Abstract

We propose in this paper a novel idea to handle a tour for the Generalized Traveling Salesman Problem (GTSP), which is an NP-hard optimization problem very solicited for its numerous applications. Knowing that for each instance, cities are grouped in clusters. The proposed method finds for each one its barycenter in order to get in a first phase a good order of visiting clusters. Then, it uses one of the well-known methods to choose a city from each cluster. The obtained solution can be a good starting tour that can be used as an input for improvement methods. Our work is validated with some practical tests on benchmark instances. Obtained results show that our method gives feasible solution instantly.

Keywords

  • Generalized Traveling Salesman Problem
  • Clustering
  • Initialization
  • Barycenter
  • Combinatorial optimization problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-53480-0_14
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-53480-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Ben-Arieh, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP. Oper. Res. Lett. 31(5), 357–365 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Bontoux, B., Artigues, C., Feillet, D.: A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Comput. Oper. Res. 37(11), 1844–1852 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Garone, E., Determe, J.F., Naldi, R.: Generalized traveling salesman problem for carrier-vehicle systems. J. Guidance Control Dyn. 37(3), 766–774 (2014)

    CrossRef  Google Scholar 

  5. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling salesman problem. Nat. Comput. 9(1), 47–60 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Gutin, G., Karapetyan, D., Krasnogor, N.: Memetic algorithm for the generalized asymmetric traveling salesman problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), pp. 199–210. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Henry-Labordere, A.: The record balancing problem: a dynamic programming solution of a generalized travelling salesman problem. RIRO B–2, 43–49 (1969)

    MATH  Google Scholar 

  8. Hu, B., Raidl, G.R.: Effective neighborhood structures for the generalized traveling salesman problem. In: Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 36–47. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78604-7_4

    CrossRef  Google Scholar 

  9. Karapetyan, D., Gutin, G.: Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem. Eur. J. Oper. Res. 219(2), 234–251 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Laporte, G., Semet, F.: Computational evaluation of a transformation procedure for the symmetric generalized traveling salesman problem. INFOR Inf. Syst. Oper. Res. 37(2), 114–120 (1999)

    Google Scholar 

  11. Noon, C.E.: The generalized traveling salesman problem. Ph.D. thesis, University of Michigan (1988)

    Google Scholar 

  12. Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR Inf. Syst. Oper. Res. 31(1), 39–44 (1993)

    MATH  Google Scholar 

  13. Pourhassan, M., Neumann, F.: On the impact of local search operators and variable neighbourhood search for the generalized travelling salesperson problem. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 465–472. ACM (2015)

    Google Scholar 

  14. Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Renaud, J., Boctor, F.F.: An efficient composite heuristic for the symmetric generalized traveling salesman problem. Eur. J. Oper. Res. 108(3), 571–584 (1998)

    CrossRef  MATH  Google Scholar 

  16. Renaud, J., Boctor, F.F., Laporte, G.: A fast composite heuristic for the symmetric traveling salesman problem. INFORMS J. Comput. 8(2), 134–143 (1996)

    CrossRef  MATH  Google Scholar 

  17. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.: Particle swarm optimization-based algorithms for tsp and generalized tsp. Inf. Process. Lett. 103(5), 169–176 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Silberholz, J., Golden, B.: The generalized traveling salesman problem: A new genetic algorithm approach. In: Baker, E.K., Joseph, A., Mehrotra, A., Trick, M.A. (eds.) Extending the Horizons: Advances In Computing, Optimization, and Decision Technologies, pp. 165–181. Springer, New York (2007)

    CrossRef  Google Scholar 

  19. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174(1), 38–53 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Srivastava, S., Kumar, S., Garg, R., Sen, P.: Generalized travelling salesman problem through n sets of nodes. CORS J. 7, 97–101 (1969)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors of this paper sincerely thank the Agence Universitaire de la Francophonie (AUF) for the generous support and convey their gratitude to Mr. Mohamed El Yafrani for his precious remarks on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi El Krari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

El Krari, M., Ahiod, B., El Benani, B. (2017). Using Cluster Barycenters for the Generalized Traveling Salesman Problem. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53480-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53479-4

  • Online ISBN: 978-3-319-53480-0

  • eBook Packages: EngineeringEngineering (R0)