Abstract
We propose in this paper a novel idea to handle a tour for the Generalized Traveling Salesman Problem (GTSP), which is an NP-hard optimization problem very solicited for its numerous applications. Knowing that for each instance, cities are grouped in clusters. The proposed method finds for each one its barycenter in order to get in a first phase a good order of visiting clusters. Then, it uses one of the well-known methods to choose a city from each cluster. The obtained solution can be a good starting tour that can be used as an input for improvement methods. Our work is validated with some practical tests on benchmark instances. Obtained results show that our method gives feasible solution instantly.
Keywords
- Generalized Traveling Salesman Problem
- Clustering
- Initialization
- Barycenter
- Combinatorial optimization problem
This is a preview of subscription content, access via your institution.
Buying options





References
Ben-Arieh, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP. Oper. Res. Lett. 31(5), 357–365 (2003)
Bontoux, B., Artigues, C., Feillet, D.: A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Comput. Oper. Res. 37(11), 1844–1852 (2010)
Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)
Garone, E., Determe, J.F., Naldi, R.: Generalized traveling salesman problem for carrier-vehicle systems. J. Guidance Control Dyn. 37(3), 766–774 (2014)
Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling salesman problem. Nat. Comput. 9(1), 47–60 (2010)
Gutin, G., Karapetyan, D., Krasnogor, N.: Memetic algorithm for the generalized asymmetric traveling salesman problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), pp. 199–210. Springer, Heidelberg (2008)
Henry-Labordere, A.: The record balancing problem: a dynamic programming solution of a generalized travelling salesman problem. RIRO B–2, 43–49 (1969)
Hu, B., Raidl, G.R.: Effective neighborhood structures for the generalized traveling salesman problem. In: Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 36–47. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78604-7_4
Karapetyan, D., Gutin, G.: Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem. Eur. J. Oper. Res. 219(2), 234–251 (2012)
Laporte, G., Semet, F.: Computational evaluation of a transformation procedure for the symmetric generalized traveling salesman problem. INFOR Inf. Syst. Oper. Res. 37(2), 114–120 (1999)
Noon, C.E.: The generalized traveling salesman problem. Ph.D. thesis, University of Michigan (1988)
Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR Inf. Syst. Oper. Res. 31(1), 39–44 (1993)
Pourhassan, M., Neumann, F.: On the impact of local search operators and variable neighbourhood search for the generalized travelling salesperson problem. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 465–472. ACM (2015)
Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
Renaud, J., Boctor, F.F.: An efficient composite heuristic for the symmetric generalized traveling salesman problem. Eur. J. Oper. Res. 108(3), 571–584 (1998)
Renaud, J., Boctor, F.F., Laporte, G.: A fast composite heuristic for the symmetric traveling salesman problem. INFORMS J. Comput. 8(2), 134–143 (1996)
Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.: Particle swarm optimization-based algorithms for tsp and generalized tsp. Inf. Process. Lett. 103(5), 169–176 (2007)
Silberholz, J., Golden, B.: The generalized traveling salesman problem: A new genetic algorithm approach. In: Baker, E.K., Joseph, A., Mehrotra, A., Trick, M.A. (eds.) Extending the Horizons: Advances In Computing, Optimization, and Decision Technologies, pp. 165–181. Springer, New York (2007)
Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174(1), 38–53 (2006)
Srivastava, S., Kumar, S., Garg, R., Sen, P.: Generalized travelling salesman problem through n sets of nodes. CORS J. 7, 97–101 (1969)
Acknowledgments
The authors of this paper sincerely thank the Agence Universitaire de la Francophonie (AUF) for the generous support and convey their gratitude to Mr. Mohamed El Yafrani for his precious remarks on this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
El Krari, M., Ahiod, B., El Benani, B. (2017). Using Cluster Barycenters for the Generalized Traveling Salesman Problem. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-53480-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53479-4
Online ISBN: 978-3-319-53480-0
eBook Packages: EngineeringEngineering (R0)