Mobility Support and Service Discovery for Industrial Process Monitoring

  • Tuan DangEmail author
  • Pascale Minet
  • Patrick Bellot
  • Christophe Mozzati
  • Erwan Livolant
Part of the Studies in Big Data book series (SBD, volume 25)


A service-oriented architecture designed for the use of wireless sensors networks (WSN) in industrial applications such as the operation and maintenance of industrial installations is presented in this chapter. This architecture comprises the OCARI wireless sensor network and the OPC-UA/ROSA middleware, as well as the KASEM predictive maintenance system. In contrast to well-known communication stacks for wireless sensor networks such as ZigBee and WirelessHart, OCARI has been designed to support mobility of sensor nodes. Furthermore, the OPC-UA/ROSA middleware provides service discovery to enable the interconnection of the WSN with the Internet of Things (IoT). This architecture targets various industrial applications such as process monitoring, pollutant detection, monitoring of fuel storage area, fire detection in temporary worksites, health monitoring of people working in hazardous conditions, etc.


Sensor Node Wireless Sensor Network Static Node Mobile Node Service Oriented Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank our partners in the CONNEXION project (


  1. 1.
    Wagner, D.: OPC-UA specification, Part 1 to Part 12. Technical Report on OPC-UA Foundation, pp. 1–7 (2009)Google Scholar
  2. 2.
    Khaldoun, A.A., Gerard, C., Alexandre, G., Erwan, L., Saoucene, M., Pascale, M., Michel, M., Joseph, R., Thierry, V., van den Adrien, B.: Cross-layering in an industrial wireless sensor network: case study of OCARI. J. Netw. 4(6), 411–420 (2009)Google Scholar
  3. 3.
    Tuan, D., Pascale, M., Erwan, L.: OCARI: a wireless sensor network for industrial environments. ERCIM News 15(101), 3455–3467 (2015)Google Scholar
  4. 4.
    Tuan, D., Dragutin B., Patrick, B.: Routing in OPC-UA with rosa overlay network. In: Proceedings of Workshops on the Move to Meaningful Internet Systems, pp. 86–90 (2014)Google Scholar
  5. 5.
    Loïc, B., Nguyen, P., Patrick, B.: Robust overlay network with self-adaptive topology: Protocol description. In: Proceedings of IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies, pp. 154–160 (2008)Google Scholar
  6. 6.
    Haung, K..: HART communication protocol specification. Tech. Rep. HART Commun. Found. 12(4), 129–137 (2008)Google Scholar
  7. 7.
    Isa, K..: ISA-100 wireless systems for industrial automation: process control and related applications. Tech. Rep. Int. Soc. Autom. 12(4), 112–122 (2009)Google Scholar
  8. 8.
    Zig Bee Alliance: Zig Bee Specification, pp. 16–29 (2008)Google Scholar
  9. 9.
    Montenegro, G., Kushalnagar, N., Hui, J., and Culler, D.: Transmission of IPv6 packets over IEEE 802.15.4 networks. Req. Comments 4944, 1–30 (2007)Google Scholar
  10. 10.
    Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J.P., Alexander, R.: RPL: IPv6 routing protocol for low-power and lossy networks. Req. Comments 6550, 1–157 (2012)Google Scholar
  11. 11.
    Scholz, A., Gaponova, I., Sommer, S., Kemper, A., Knoll, A., Buckl, C., Heuer, J., Schmitt, A.: Epsilon SOA - service oriented architectures adapted for embedded networks. In: Proceedings of 7th IEEE International Conference on Industrial Informatics, pp. 599–605 (2009)Google Scholar
  12. 12.
    Mohamed, N., Al-Jaroodi, J.: A survey on service-oriented middleware for wireless sensor networks. Serv. Oriented Comput. Appl. 5(2), 71–85 (2001)CrossRefGoogle Scholar
  13. 13.
    Orfali, R., Harkey, D., Edwards, J.: The Essential Client/Server Survival Guide, 2nd edn. pp. 1–9. Wiley, New York (1996)Google Scholar
  14. 14.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Edwards, J.: MQTT Specification. Technical Report on OASIS Standard, pp. 1–8 (2014)Google Scholar
  16. 16.
    Gaponova, I.: MQTT and the NIST Cybersecurity Framework. Technical Report on OASIS Standard, pp. 1–5 (2014)Google Scholar
  17. 17.
    Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP). Req. Comments 7252, 12–19 (2014)Google Scholar
  18. 18.
    OPC-UA Foundation: OPC UA Specification, part 3: Address Space Model, Version 1.01. pp. 1–9 (2009)Google Scholar
  19. 19.
    Kirov, G., Stoyanov, V., Lazarov, B.: Abstract model of an object-oriented layer for distributed systems based on the DDS standard. In: Proceedings of the 12th International Conference on Computer Systems and Technologies, pp. 75–81 (2011)Google Scholar
  20. 20.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)CrossRefGoogle Scholar
  21. 21.
    Henricksen, K., Robinson, R.: A survey of middleware for sensor networks: state-of-the-art and future directions. In: Proceedings of the International Workshop on Middleware for Sensor Networks, pp. 60–65 (2006)Google Scholar
  22. 22.
    Linthicum, D.S.: Enterprise application integration, pp. 1–47. Addison-Wesley Longman Ltd, UK (2000)Google Scholar
  23. 23.
    Ichrak, A., Pascale, M., Cedric, A.: OSERENA: a coloring algorithm optimized for dense wireless networks. Int. J. Netw. Distrib. Comput. 1(1), 9–24 (2013)CrossRefGoogle Scholar
  24. 24.
    Saoucene, M., Pascale, M.: EOLSR: an energy efficient routing protocol in wireless ad hoc and sensor networks. J. Int. Netw. 9(4), 389–408 (2008)CrossRefGoogle Scholar
  25. 25.
    Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). Req. Comments 3626, 19–24 (2003)Google Scholar
  26. 26.
    Gerard, C., Erwan, L., Alexandre, G., Adrien-van-den, B., Michel, M., Thierry, V.: Specifications and evaluation of a MAC protocol for a LP-WPAN. Ad Hoc Sens. Wirel. Netw. 7(1/2), 69–89 (2009)Google Scholar
  27. 27.
    Succic, S.: Optimizing OPC UA middleware performance for energy automation applications. In: Proceedings of IEEE International Conerrence on Energy, pp. 1570–1575 (2014)Google Scholar
  28. 28.
    Voisin, A., Medina-Oliva, G., Monnin, M., Léger, Jean-Baptiste, Iung, B.: Health monitoring and prognostic assessment in a fleet context. In: Proceedings of Annual Conference of the Society For Machinery Failure Prevention Technology, pp. 566–571 (2014)Google Scholar
  29. 29.
    Voisin, A., Medina-Oliva, G., Monnin, M., Léger, Jean-Baptiste, Iung, B.: Fault diagnosis system based on ontology for fleet case reused. In: Ebrahimipour, V., Yacout, S. (eds.) Ontology Modeling in Physical Asset Integrity Management, pp. 133–169. Springer International Publishing, Switzerland (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tuan Dang
    • 1
    Email author
  • Pascale Minet
    • 2
  • Patrick Bellot
    • 3
  • Christophe Mozzati
    • 4
  • Erwan Livolant
    • 2
  1. 1.EDF R&D Lab, STEP DepartmentChatou CedexFrance
  2. 2.InriaParisFrance
  3. 3.LTCI, Télécom ParisTech, Université Paris-SaclayParisFrance
  4. 4.PredictVandoeuvre-les-nancyFrance

Personalised recommendations