Abstract
The generalized method of moments (GMM) is a conceptually simple and flexible estimation method that has come to play an increasingly prominent role in empirical research in economics over the last 30 years. Application of GMM requires the availability of so-called moment equations or moment conditions. There should be at least as many moment equations as there are parameters to be estimated. If this condition is satisfied (plus some regularity conditions), application of GMM is in principle straightforward and delivers estimators for the parameters that are consistent and asymptotically normal. If desired, the estimators can in addition be made asymptotically efficient given the available moment equations, that is, have the lowest achievable variance or highest precision asymptotically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albuquerque, P., Bronnenberg, B.J.: Estimating demand heterogeneity using aggregated data: an application to the frozen pizza category. Market. Sci. 28, 356–372 (2009)
Anderson, T.W.: Origins of the limited information maximum likelihood and two-stage least squares estimators. J. Econ. 127, 1–16 (2005)
Anderson, T.W., Hsiao, C.: Estimation of dynamic models with error components. J. Am. Stat. Assoc. 77, 598–606 (1981)
Anderson, T.W., Rubin, H.: Estimator of the parameters of a single equation in a complete system of stochastic equations. Ann. Math. Stat. 20, 46–63 (1949)
Anderson, T.W., Rubin, H.: The asymptotic properties of estimates of the parameters of a single equation in a complete system of stochastic equations. Ann. Math. Stat. 21, 570–582 (1950)
Angrist, J.D., Krueger, A.B.: Does compulsory school attendance affect schooling and earnings? Q. J. Econ. 106, 979–1014 (1991)
Angrist, J.D., Pischke, J.-S.: Mostly Harmless Econometrics. Princeton University Press, Princeton (2009)
Angrist, J., Graddy, K., Imbens, G.: The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev. Econ. Stud. 67, 499–527 (2000)
Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991)
Ashworth, S., Clinton, J.D.: Does advertising exposure affect turnout? Q. J. Polit. Sci. 2, 27–41 (2007)
Bass, F.M., Parsons, L.J.: Simultaneous equation regression analysis of sales and advertising. Appl. Econ. 1, 103–124 (1969)
Bekker, P.A.: Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62, 657–681 (1994)
Bekker, P.A., Crudu, F.: Jackknife instrumental variable estimation with heteroskedasticity. J. Econ. 185, 332–342 (2015)
Berndt, E.R.: The Practice of Econometrics. Addison-Wesley, Reading, MA (1991)
Berry, S.: Estimating discrete-choice models of product differentiation. RAND J. Econ. 25, 242–262 (1994)
Berry, S., Levinsohn, J., Pakes, A.: Automobile prices in market equilibrium. Econometrica 63, 841–890 (1995)
Bound, J., Jaeger, D., Baker, R.: Problems with instrumental variables estimation when the correlation between the instruments and the endogenous variables is weak. J. Am. Stat. Assoc. 90, 443–450 (1995)
Breusch, T., Qian, H., Schmidt, P., Wyhowski, D.J.: Redundancy of moment conditions. J. Econ. 91, 89–111 (1999)
Cameron, A.C., Trivedi, P.K.: Microeconometrics. Cambridge University Press, New York (2005)
Chaussé, P.: Computing generalized method of moments and generalized empirical likelihood with R. J. Stat. Softw. 34(11), 1–35 (2010)
Cragg, J.: More efficient estimation in the presence of heteroskedasticity of unknown form. Econometrica 51, 751–763 (1983)
Doran, H.E., Schmidt, P.: GMM estimators with improved finite sample properties using principal components of the weighting matrix, with an application to the dynamic panel data model. J. Econ. 133, 387–409 (2006)
Germann, F., Ebbes, P., Grewal, R.: The chief marketing officer matters! J. Market. 79(3), 1–22 (2015)
Gu, B., Park, J., Konana, P.: The impact of external word-of-mouth sources on retailer sales of high-involvement products. Inf. Syst. Res. 23, 182–196 (2012)
Hall, A.R.: Generalized Method of Moments. Oxford University Press, Oxford (2005)
Hall, A.R.: Generalized method of moments. In: Hashimzade, N., Thronton, M.A. (eds.) Handbook of Research Methods and Applications in Empirical Macroeconomics, pp. 313–333. Edward Elgar, Cheltenham (2013)
Hall, A.R.: Econometricians have their moments: GMM at 32. Econ. Rec. 91(Suppl. S1), 1–24 (2015)
Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica 50, 1029–1054 (1982)
Hansen, L.P., Singleton, K.J.: Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica 50, 1269–1286 (1982)
Hansen, L.P., Heaton, J., Yaron, A.: Finite-sample properties of some alternative GMM estimators. J. Bus. Econ. Stat. 14, 262–280 (1996)
Hausman, J.A., Taylor, W.E.: Panel data and unobservable individual effects. Econometrica 49, 1377–1398 (1981)
Hayashi, F.: Econometrics. Princeton University Press, Princeton (2000)
Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47, 153–161 (1979)
Jagannathan, R., Skoulakis, G., Wang, Z.: Generalized method of moments: applications in finance. J. Bus. Econ. Stat. 20, 470–481 (2002)
Jaibi, M.R., Ten Raa, M.H.: An asymptotic foundation for logit models. Reg. Sci. Urban Econ. 28, 75–90 (1998)
Kleibergen, F., Paap, R.: Generalized reduced rank tests using the singular value decomposition. J. Econ. 133, 97–126 (2006)
Meijer, E., Wansbeek, T.J.: The sample selection model from a method of moments perspective. Econ. Rev. 26, 25–51 (2007)
Murray, M.P.: Avoiding invalid instruments and coping with weak instruments. J. Econ. Perspect. 20, 111–132 (2006)
Narayanan, S., Nair, H.S.: Estimating causal installed-base effects: a bias-correction approach. J. Market. Res. 50, 70–94 (2013)
Narayanan, S., Manchanda, P., Chintagunta, P.K.: Temporal differences in the role of marketing communication in new product categories. J. Market. Res. 42, 278–290 (2005)
Nevo, A.: A practitioner’s guide to estimation of random coefficients logit models of demand. J. Econ. Manag. Strateg. 9, 513–548 (2000)
Newey, W.K.: A method of moments interpretation of sequential estimators. Econ. Lett. 14, 201–206 (1984)
Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In: Griliches, Z., Intriligator, M. (eds.) Handbook of Econometrics, vol. 4. North Holland, Amsterdam (1994)
Newey, W.K., West, K.D.: A simple positive-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–708 (1987)
Park, S., Gupta, S.: Comparison of SML and GMM estimators for the random coefficient logit model using aggregate data. Empir. Econ. 43, 1353–1372 (2012)
Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. Ser. A 185, 71–110 (1894)
Qian, H., Schmidt, P.: Improved instrumental variables and generalized method of moments estimators. J. Econ. 91, 145–169 (1999)
Reiersøl, O.: Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica 9, 1–24 (1941)
Rossi, P.E.: Even the rich can make themselves poor: a critical examination of IV methods in marketing applications. Market. Sci. 33, 655–672 (2014)
Stock, J.H., Trebbi, F.: Who invented instrumental variable regression? J. Econ. Perspect. 17, 177–194 (2003)
Theil, H.: Repeated Least Squares Applied to Complete Equation Systems. Central Planning Bureau, The Hague (1953)
Theil, H., Finke, R.: The distance from the equator as an instrumental variable. Econ. Lett. 13, 357–360 (1983)
Vitorino, M.A.: Understanding the effect of advertising on stock returns and firm value: theory and evidence from a structural model. Manag. Sci. 60, 227–245 (2014)
Wang, L., Hsiao, C.: Method of moments and identifiability of semi-parametric nonlinear errors-in-variables models. J. Econ. 165, 30–44 (2011)
Wansbeek, T.J.: Correcting for heteroskedasticity of unspecified form – problem 04.1.2. Econ. Theory 20, 224 (2004)
Wansbeek, T.J., Meijer, E.: Measurement Error and Latent Variables in Econometrics. North-Holland, Amsterdam (2000)
Wheaton, B., Muthén, B., Alwin, D., Summers, G.: Assessing reliability and stability in panel models. In: Heise, D.R. (ed.) Sociological Methodology 1977, pp. 84–136. Jossey-Bass, San Francisco (1977)
White, H.L.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838 (1980)
Windmeijer, F.: A finite sample correction for the variance of linear efficient two-step GMM estimators. J. Econ. 126, 25–51 (2005)
Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data, 2nd edn. MIT Press, Cambridge (2010)
Wright, P.G.: The Tariff on Animal and Vegetable Oils. Macmillan, New York (1928)
Acknowledgements
The author is grateful to Erik Meijer for his ever incisive and stimulating comments. He benefited greatly from comments and suggestions by Jochem de Bresser, Marnik Dekimpe, Pim Heijnen, Peter Leeflang, Laura Spierdijk, Roberto Wessels and the students in my Applied Econometrics course.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Wansbeek, T.J. (2017). Generalized Method of Moments. In: Leeflang, P., Wieringa, J., Bijmolt, T., Pauwels, K. (eds) Advanced Methods for Modeling Markets. International Series in Quantitative Marketing. Springer, Cham. https://doi.org/10.1007/978-3-319-53469-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-53469-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53467-1
Online ISBN: 978-3-319-53469-5
eBook Packages: Business and ManagementBusiness and Management (R0)