Optimal Distortion Estimation for Prediction Error Expansion Based Reversible Watermarking

  • Aniket RoyEmail author
  • Rajat Subhra Chakraborty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10082)


Reversible Image Watermarking is a technique to losslessly embed and retrieve information (in the form of a watermark) in a cover image. Prediction Error Expansion based schemes are currently the most efficient and widely used reversible image watermarking techniques. Estimation of the minimum achievable (optimum) distortion for a given payload and a given cover image, is an important problem for reversible watermarking schemes. In this paper, we first show that the bounded capacity distortion minimization problem for prediction error expansion based reversible watermarking schemes is NP-hard, and that the corresponding decision version of the problem is NP-complete. We then propose a low computational overhead heuristic to estimate the minimal distortion. Our estimation technique first estimates (for a given image) the prediction error distribution function without explicit use of any prediction scheme, and then minimizes the distortion for a given payload by solving a convex optimization problem to estimate an embedding threshold parameter. Experimental results for common benchmark images closely match the predictions from our technique, and thus verify the consistency of our approach.


Prediction Error Cover Image Discrete Cosine Transform Coefficient Payload Size Reversible Watermark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cox, I., Miller, M., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, Jeffrey Bloom (2007)Google Scholar
  2. 2.
    Roy, A., Chakraborty, R.S., Naskar, R.: Reversible color image watermarking in the YCoCg-R color space. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 480–498. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26961-0_28 CrossRefGoogle Scholar
  3. 3.
    Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In: International Conference on Image Processing, Proceedings, vol. 2, p. 157. IEEE (2002)Google Scholar
  4. 4.
    Ni, Z., Shi, Y.-Q., Ansari, N., Wei, S.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  5. 5.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  6. 6.
    Thodi, D.M., Rodríguez, J.J.: Reversible watermarking by prediction-error expansion. In: 6th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 21–25. IEEE (2004)Google Scholar
  7. 7.
    Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2010)CrossRefGoogle Scholar
  8. 8.
    Naskar, R., Chakraborty, R.S.: Reversible watermarking utilising weighted median-based prediction. IET Image Process. 6(5), 507–520 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting, prediction. IEEE Trans. Circ. Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  10. 10.
    Dragoi, I.-C., Coltuc, D.: Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 23(4), 1779–1790 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhou, J., Au, O.C.: Determining the capacity parameters in pee-based reversible image watermarking. IEEE Signal Process. Lett. 19(5), 287–290 (2012)CrossRefGoogle Scholar
  12. 12.
    Xiaocheng, H., Zhang, W., Li, X., Nenghai, Y.: Minimum rate prediction and optimized histograms modification for reversible data hiding. IEEE Trans. Inf. Forensics Secur. 10(3), 653–664 (2015)CrossRefGoogle Scholar
  13. 13.
    Naskar, R., Chakraborty, R.S.: A technique to evaluate upper bounds on performance of pixel-prediction based reversible watermarking algorithms. J. Signal Process. Syst. 82(3), 373–389 (2015)CrossRefGoogle Scholar
  14. 14.
    Chandramouli, R., Trivedi, S.P., Uma, R.N.: On the complexity and hardness of the steganography embedding problem. In: International Society for Optics and Photonics Electronic Imaging, pp. 496–500 (2004)Google Scholar
  15. 15.
    Bo, O., Li, X., Zhao, Y., Ni, R., Shi, Y.-Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, vol. 6. MIT press, Cambridge (2001)zbMATHGoogle Scholar
  17. 17.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, vol. 2. Siam (2001)Google Scholar
  18. 18.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)Google Scholar
  19. 19.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall Inc., Englewood Cliffs (1989)zbMATHGoogle Scholar
  20. 20.
    Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Grant, M., Boyd, S., Ye, Y.: Cvx: Matlab software for disciplined convex programming (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Secured Embedded Architecture Laboratory (SEAL), Department of Computer Science and Engineering Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations