Skip to main content

Abstract

Gene therapy can be defined as the use of nucleic acids (NAs) as medicines with the aim of correcting a deficient gene expression, introducing new functions in the cell, repairing mutations and modulating the gene expression. Two main classes of vectors, viral and nonviral, have been used for gene delivery in order to avoid the NAs hydrolysis by tissue nucleases and improve their cellular uptake. The ideal gene delivery vector should offer high transfection efficacy, cell specificity and low toxicity. However, the immunogenic and mutagenic side effects of viral vector as well as toxicity and low efficacy of nonviral carriers are limiting their application. In this respect, naked NAs delivery by physical methods could be the safest procedure for gene therapy strategies if the appropriate efficacy can be achieved. These procedures employ physical forces to permit the nucleic acid cross the cell membrane and reach the cell without any carrier agent. Although viral and nonviral chemical methods are widely employed in experimental research and clinical trials, the physical methods of DNA delivery are a strategy in increasing progress. In this chapter, the main physical procedures (microinjection, needle injection, needle-free jet injection, gene gun, electroporation, sonoporation, hydroporation, magnetofection and laser irradiation) for naked nucleic acids delivery are described, emphasizing their use justification, their development, the proposed mechanism of NAs transfer and their clinical use or potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeger C, Ganem D, Varmus HE. The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci U S A. 1984;81(18):5849–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Villemejane J, Mir LM. Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol. 2009;157(2):207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod. 2014;90(5):93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci. 2013;20(1):4–14.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson AM, Aten QT, Toone NC, Black JL, Jensen BD, Tamowski S, Howell LL, Burnett SH. Transgene delivery via intracellular electroporetic nanoinjection. Transgenic Res. 2013;22(5):993–1002.

    Article  CAS  PubMed  Google Scholar 

  8. Adamo A, Roushdy O, Dokov R, Sharei A, Jensen KF. Microfluidic jet injection for delivering macromolecules into cells. J Micromech Microeng (2013);23.

    Google Scholar 

  9. Graf SF, Madigou T, Li R, Chesne C, Stemmer A, Knapp HF. Fully automated microinjection system for Xenopus laevis oocytes with integrated sorting and collection. J Lab Autom. 2011;16(3):186–96.

    Article  CAS  PubMed  Google Scholar 

  10. Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J Lab Autom. 2014;19(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  11. Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther. 2013;24(11):914–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li G, Gonzalez P, Camras LJ, Navarro I, Qiu J, Challa P, Stamer WD. Optimizing gene transfer to conventional outflow cells in living mouse eyes. Exp Eye Res. 2013;109:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TR, Donnelly RF. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearson FE, McNeilly CL, Crichton ML, Primiero CA, Yukiko SR, Fernando GJ, Chen X, Gilbert SC, Hill AV, Kendall MA. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS ONE. 2013;8(7):e67888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pearton M, Allender C, Brain K, Anstey A, Gateley C, Wilke N, Morrissey A, Birchall J. Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm Res. 2008;25(2):407–16.

    Article  CAS  PubMed  Google Scholar 

  17. Grunwald T, Ulbert S. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccine Res. 2015;4(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hickerson RP, Wey WC, Rimm DL, Speaker T, Suh S, Flores MA, Gonzalez-Gonzalez E, Leake D, Contag CH, Kaspar RL. Gene silencing in skin after deposition of self-delivery siRNA with a motorized microneedle array device. Mol Ther Nucleic Acids. 2013;2:e129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Johansson S, Ek M, Wahren B, Stout R, Liu M, Hallermalm K. Intracellular targeting of CEA results in Th1-type antibody responses following intradermal genetic vaccination by a needle-free jet injection device. Sci World J. 2007;7:987–99.

    Article  CAS  Google Scholar 

  20. Walther W, Minow T, Martin R, Fichtner I, Schlag PM, Stein U. Uptake, biodistribution, and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection. Hum Gene Ther. 2006;17(6):611–24.

    Article  CAS  PubMed  Google Scholar 

  21. Walther W, Siegel R, Kobelt D, Knosel T, Dietel M, Bembenek A, Aumann J, Schleef M, Baier R, Stein U, Schlag PM. Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res. 2008;14(22):7545–53.

    Article  CAS  PubMed  Google Scholar 

  22. Walther W, Stein U, Fichtner I, Voss C, Schmidt T, Schleef M, Nellessen T, Schlag PM. Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol. 2002;21(2):105–15.

    Article  CAS  PubMed  Google Scholar 

  23. Fargnoli AS, Katz MG, Williams RD, Margulies KB, Bridges CR. A needleless liquid jet injection delivery method for cardiac gene therapy: a comparative evaluation versus standard routes of delivery reveals enhanced therapeutic retention and cardiac specific gene expression. J Cardiovasc Transl Res. 2014;7(8):756–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang D, Das DB, Rielly CD. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv. 2014;21(8):571–87.

    Article  CAS  PubMed  Google Scholar 

  25. Macklin MD, Drape RJ, Swain WF. Preparations for particle-mediated gene transfer using the accell(R) gene gun. Methods Mol Med. 2000;29:297–303.

    CAS  PubMed  Google Scholar 

  26. Hou Y, Lai M, Chen X, Li J, Hu Y, Luo Z, Ding X, Cai K. Effects of mesoporous SiO2, Fe3 O4, and TiO2 nanoparticles on the biological functions of endothelial cells in vitro. J Biomed Mater Res A. 2014;102(6):1726–36.

    Article  PubMed  CAS  Google Scholar 

  27. Bryan M, Guyach S, Norris KA. Biolistic DNA vaccination against trypanosoma infection. Methods Mol Biol. 2013;940:305–15.

    CAS  PubMed  Google Scholar 

  28. Zhang D, Das DB, Rielly CD. An experimental study of microneedle-assisted microparticle delivery. J Pharm Sci. 2013;102(10):3632–44.

    Article  CAS  PubMed  Google Scholar 

  29. Arsenault J, O’Brien JA. Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes. 2013;6:544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Deressa T, Stoecklinger A, Wallner M, Himly M, Kofler S, Hainz K, Brandstetter H, Thalhamer J, Hammerl P. Structural integrity of the antigen is a determinant for the induction of T-helper type-1 immunity in mice by gene gun vaccines against E. coli beta-galactosidase. PLoS ONE. 2014;9(7):e102280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cai MS, Deng SX, Li ML. Comparison of the immune responses in BALB/c mice following immunization with DNA-based and live attenuated vaccines delivered via different routes. Vaccine. 2013;31(9):1353–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kwak K, Jiang R, Jagu S, Wang JW, Wang C, Christensen ND, Roden RB. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation. PLoS ONE. 2013;8(3):e60507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahlen G, Holmstrom F, Gibbs A, Alheim M, Frelin L. Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther. 2014;21(8):739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berger E, Soldati R, Huebener N, Hohn O, Stermann A, Durmus T, Lobitz S, Zenclussen AC, Christiansen H, Lode HN, Fest S. Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma. Cancer Lett. 2013;331(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  35. Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones S, Evans K, McElwaine-Johnn H, Sharpe M, Oxford J, Lambkin-Williams R, Mant T, Nolan A, Zambon M, Ellis J, Beadle J, Loudon PT. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine. 2009;27(18):2506–12.

    Article  CAS  PubMed  Google Scholar 

  37. Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet. 2015;89:49–88.

    PubMed  Google Scholar 

  38. Hibino M, Itoh H, Kinosita K Jr. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J. 1993;64(6):1789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Escoffre JM, Portet T, Favard C, Teissie J, Dean DS, Rols MP. Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta. 2011;1808(6):1538–43.

    Article  CAS  PubMed  Google Scholar 

  40. Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW. Efficient nonviral cutaneous transfection. Mol Ther. 2000;2(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  41. Somiari S, Glasspool-Malone J, Drabick JJ, Gilbert RA, Heller R, Jaroszeski MJ, Malone RW. Theory and in vivo application of electroporative gene delivery. Mol Ther. 2000;2(3):178–87.

    Article  CAS  PubMed  Google Scholar 

  42. Portet T, Mauroy C, Demery V, Houles T, Escoffre JM, Dean DS, Rols MP. Destabilizing giant vesicles with electric fields: an overview of current applications. J Membr Biol. 2012;245(9):555–64.

    Article  CAS  PubMed  Google Scholar 

  43. Golzio M, Teissie J, Rols MP. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A. 2002;99(3):1292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437–47.

    Article  CAS  PubMed  Google Scholar 

  45. Heller R, Jaroszeski MJ, Glass LF, Messina JL, Rapaport DP, DeConti RC, Fenske NA, Gilbert RA, Mir LM, Reintgen DS. Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer. 1996;77(5):964–71.

    Article  CAS  PubMed  Google Scholar 

  46. Mir LM, Orlowski S, Belehradek J Jr, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer. 1991;27(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  47. Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet. 2015;89:235–62.

    PubMed  Google Scholar 

  48. Kalams SA, Parker SD, Elizaga M, Metch B, Edupuganti S, Hural J, De Rosa S, Carter DK, Rybczyk K, Frank I, Fuchs J, Koblin B, Kim DH, Joseph P, Keefer MC, Baden LR, Eldridge J, Boyer J, Sherwat A, Cardinali M, Allen M, Pensiero M, Butler C, Khan AS, Yan J, Sardesai NY, Kublin JG, Weiner DB, Network NHVT. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J Infect Dis. 2013;208(5):818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang FQ, Yu YY, Wang GQ, Chen J, Li JH, Li YQ, Rao GR, Mo GY, Luo XR, Chen GM. A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J Viral Hepat. 2012;19(8):581–93.

    Article  PubMed  Google Scholar 

  50. Weiland O, Ahlen G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sallberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther. 2013;21(9):1796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hooper JW, Moon JE, Paolino KM, Newcomer R, McLain DE, Josleyn M, Hannaman D, Schmaljohn C. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Clin Microbiol Infect. 2014;20(Suppl 5):110–7.

    Article  CAS  PubMed  Google Scholar 

  52. Frenkel V, Li KC. Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol. 2006;2(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  53. O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93(1–3):212–55.

    PubMed  Google Scholar 

  54. Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY. Ultrasound-mediated local drug and gene delivery using nanocarriers. Biomed Res Int. 2014;2014:963891.

    PubMed  PubMed Central  Google Scholar 

  55. Newman CM, Bettinger T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther. 2007;14(6):465–75.

    Article  CAS  PubMed  Google Scholar 

  56. Brujan EA. The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol. 2004;30(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  57. De Cock I, Zagato E, Braeckmans K, Luan Y, de Jong N, De Smedt SC, Lentacker I. Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J Control Release. 2015;197:20–8.

    Article  PubMed  CAS  Google Scholar 

  58. Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev. 2014;72:82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol. 2004;44(3):644–53.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Y. Ultrasound-mediated drug/gene delivery in solid tumor treatment. J Healthc Eng. 2013;4(2):223–54.

    Article  PubMed  Google Scholar 

  61. Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1137–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. du Toit LC, Govender T, Pillay V, Choonara YE, Kodama T. Investigating the effect of polymeric approaches on circulation time and physical properties of nanobubbles. Pharm Res. 2011;28(3):494–504.

    Article  PubMed  CAS  Google Scholar 

  63. Horie S, Watanabe Y, Chen R, Mori S, Matsumura Y, Kodama T. Development of localized gene delivery using a dual-intensity ultrasound system in the bladder. Ultrasound Med Biol. 2010;36(11):1867–75.

    Article  PubMed  Google Scholar 

  64. Geers B, Dewitte H, De Smedt SC, Lentacker I. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release. 2012;164(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  65. Budker V, Zhang G, Knechtle S, Wolff JA. Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther. 1996;3(7):593–8.

    CAS  PubMed  Google Scholar 

  66. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6(7):1258–66.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 1999;10(10):1735–7.

    Article  CAS  PubMed  Google Scholar 

  68. Gao M, Zhang C, Ma Y, Bu L, Yan L, Liu D. Hydrodynamic delivery of mIL10 gene protects mice from high-fat diet-induced obesity and glucose intolerance. Mol Ther. 2013;21(10):1852–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma Y, Gao M, Sun H, Liu D. Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Biochim Biophys Acta. 2015;1852(5):1001–11.

    Article  CAS  PubMed  Google Scholar 

  70. Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, Iino N, Kameda S, Kawachi H, Yaoita E, Gejyo F, Miyazaki J. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther. 2002;13(3):455–68.

    Article  CAS  PubMed  Google Scholar 

  71. Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2004;101(41):14883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang G, Budker V, Williams P, Subbotin V, Wolff JA. Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther. 2001;12(4):427–38.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Dong X, Sawyer GJ, Collins L, Fabre JW. Regional hydrodynamic gene delivery to the rat liver with physiological volumes of DNA solution. J Gene Med. 2004;6(6):693–703.

    Article  CAS  PubMed  Google Scholar 

  74. Mann MJ, Gibbons GH, Hutchinson H, Poston RS, Hoyt EG, Robbins RC, Dzau VJ. Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci U S A. 1999;96(11):6411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barnett FH, Scharer-Schuksz M, Wood M, Yu X, Wagner TE, Friedlander M. Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther. 2004;11(16):1283–9.

    Article  CAS  PubMed  Google Scholar 

  76. Crespo A, Peydro A, Dasi F, Benet M, Calvete JJ, Revert F, Alino SF. Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles. Gene Ther. 2005;12(11):927–35.

    Article  CAS  PubMed  Google Scholar 

  77. Alino SF, Crespo A, Dasi F. Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA. Gene Ther. 2003;10(19):1672–9.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang G, Song YK, Liu D. Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther. 2000;7(15):1344–9.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H, Braun S, Wolff JA. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther. 2004;15(8):770–82.

    Article  CAS  PubMed  Google Scholar 

  80. Budker VG, Subbotin VM, Budker T, Sebestyen MG, Zhang G, Wolff JA. Mechanism of plasmid delivery by hydrodynamic tail vein injection. II. Morphological studies. J Gene Med. 2006;8(7):874–88.

    Article  CAS  PubMed  Google Scholar 

  81. Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage. Hepatology. 2002;35(6):1314–9.

    Article  PubMed  Google Scholar 

  82. Kanefuji T, Yokoo T, Suda T, Abe H, Kamimura K, Liu D. Hemodynamics of a hydrodynamic injection. Mol Ther Methods Clin Dev. 2014;1:14029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kobayashi N, Nishikawa M, Hirata K, Takakura Y. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med. 2004;6(5):584–92.

    Article  CAS  PubMed  Google Scholar 

  84. Suda T, Gao X, Stolz DB, Liu D. Structural impact of hydrodynamic injection on mouse liver. Gene Ther. 2007;14(2):129–37.

    CAS  PubMed  Google Scholar 

  85. Alino SF, Herrero MJ, Noguera I, Dasi F, Sanchez M. Pig liver gene therapy by noninvasive interventionist catheterism. Gene Ther. 2007;14(4):334–43.

    Article  CAS  PubMed  Google Scholar 

  86. Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med. 2000;2(2):76–88.

    Article  CAS  PubMed  Google Scholar 

  87. Fumoto S, Nishi J, Ishii H, Wang X, Miyamoto H, Yoshikawa N, Nakashima M, Nakamura J, Nishida K. Rac-mediated macropinocytosis is a critical route for naked plasmid DNA transfer in mice. Mol Pharm. 2009;6(4):1170–9.

    Article  CAS  PubMed  Google Scholar 

  88. Sendra L, Carreno O, Miguel A, Montalva E, Herrero MJ, Orbis F, Noguera I, Barettino D, Lopez-Andujar R, Alino SF. Low RNA translation activity limits the efficacy of hydrodynamic gene transfer to pig liver in vivo. J Gene Med. 2014;16(7–8):179–92.

    CAS  PubMed  Google Scholar 

  89. Sendra Gisbert L, Miguel Matas A, Sabater Ortí L, Herrero MJ, Sabater Olivas L, Montalvá Orón EM, Frasson M, Abargues López R, López-Andújar R, García-Granero Ximénez E, Aliño Pellicer SF. Efficacy of hydrodynamic interleukin 10 gene transfer in human liver segments with interest in transplantation. Liver Transplant 2017;23(1):50–62.

    Google Scholar 

  90. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 2004;11(8):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eastman SJ, Baskin KM, Hodges BL, Chu Q, Gates A, Dreusicke R, Anderson S, Scheule RK. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther. 2002;13(17):2065–77.

    Article  CAS  PubMed  Google Scholar 

  92. Yoshino H, Hashizume K, Kobayashi E. Naked plasmid DNA transfer to the porcine liver using rapid injection with large volume. Gene Ther. 2006;13(24):1696–702.

    Article  CAS  PubMed  Google Scholar 

  93. Kamimura K, Suda T, Xu W, Zhang G, Liu D. Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther. 2009;17(3):491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sendra L, Miguel A, Pérez-Enguix D, Herrero MJ, Montalvá E, García-Gimeno MA, Noguera I, Díaz A, Pérez J, Sanz P, López-Andújar R, Martí-Bonmatí L, Aliño SF. Studying closed hydrodynamic models of “In Vivo” DNA perfusion in pig liver for gene therapy translation to humans. PLoS One. 2016;11(10):e0163898.

    Google Scholar 

  95. Suda T, Suda K, Liu D. Computer-assisted hydrodynamic gene delivery. Mol Ther. 2008;16(6):1098–104.

    Article  CAS  PubMed  Google Scholar 

  96. Masci E, Toti G, Mariani A, Curioni S, Lomazzi A, Dinelli M, Minoli G, Crosta C, Comin U, Fertitta A, Prada A, Passoni GR, Testoni PA. Complications of diagnostic and therapeutic ERCP: a prospective multicenter study. Am J Gastroenterol. 2001;96(2):417–23.

    Article  CAS  PubMed  Google Scholar 

  97. Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol Ther. 2001;3(4):623–30.

    Article  CAS  PubMed  Google Scholar 

  98. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–9.

    Article  CAS  PubMed  Google Scholar 

  99. Mondalek FG, Zhang YY, Kropp B, Kopke RD, Ge X, Jackson RL, Dormer KJ. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J Nanobiotechnology. 2006;4:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano. 2010;4(8):4733–43.

    Article  CAS  PubMed  Google Scholar 

  101. Chen CB, Chen JY, Lee WC. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J Nanosci Nanotechnol. 2009;9(4):2651–9.

    Article  CAS  PubMed  Google Scholar 

  102. Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, von Rechenberg B, Hottiger MO. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res. 2006;34(5):e40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Muthana M, Scott SD, Farrow N, Morrow F, Murdoch C, Grubb S, Brown N, Dobson J, Lewis CE. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 2008;15(12):902–10.

    Article  CAS  PubMed  Google Scholar 

  104. Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev. 2011;63(14–15):1300–31.

    Article  CAS  PubMed  Google Scholar 

  105. Li Z, Xiang J, Zhang W, Fan S, Wu M, Li X, Li G. Nanoparticle delivery of anti-metastatic NM23-H1 gene improves chemotherapy in a mouse tumor model. Cancer Gene Ther. 2009;16(5):423–9.

    Article  PubMed  CAS  Google Scholar 

  106. Li W, Ma N, Ong LL, Kaminski A, Skrabal C, Ugurlucan M, Lorenz P, Gatzen HH, Lutzow K, Lendlein A, Putzer BM, Li RK, Steinhoff G. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med. 2008;10(8):897–909.

    Article  CAS  PubMed  Google Scholar 

  107. Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M, Li GY. IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med. 2003;5(9):803–17.

    Article  CAS  PubMed  Google Scholar 

  108. Xiang L, Bin W, Huali J, Wei J, Jiesheng T, Feng G, Ying L. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med. 2007;9(8):679–90.

    Article  PubMed  CAS  Google Scholar 

  109. Prosen L, Markelc B, Dolinsek T, Music B, Cemazar M, Sersa G. Mcam silencing With RNA interference using magnetofection has antitumor effect in murine melanoma. Mol Ther Nucleic Acids. 2014;3:e205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kurata S, Tsukakoshi M, Kasuya T, Ikawa Y. The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res. 1986;162(2):372–8.

    Article  CAS  PubMed  Google Scholar 

  111. Tirlapur UK, Konig K. Targeted transfection by femtosecond laser. Nature. 2002;418(6895):290–1.

    Article  CAS  PubMed  Google Scholar 

  112. Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther. 2003;8(2):342–50.

    Article  CAS  PubMed  Google Scholar 

  113. Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat Nanotechnol. 2010;5(8):607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kalies S, Birr T, Heinemann D, Schomaker M, Ripken T, Heisterkamp A, Meyer H. Enhancement of extracellular molecule uptake in plasmonic laser perforation. J Biophotonics. 2014;7(7):474–82.

    Article  CAS  PubMed  Google Scholar 

  115. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074.

    Article  CAS  PubMed  Google Scholar 

  116. Xiong R, Raemdonck K, Peynshaert K, Lentacker I, De Cock I, Demeester J, De Smedt SC, Skirtach AG, Braeckmans K. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano. 2014;8(6):6288–96.

    Article  CAS  PubMed  Google Scholar 

  117. Zamora G, Wang F, Sun CH, Trinidad A, Kwon YJ, Cho SK, Berg K, Madsen SJ, Hirschberg H. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier. J Biomed Opt. 2014;19(10):105009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Tsen SW, Wu CY, Meneshian A, Pai SI, Hung CF, Wu TC. Femtosecond laser treatment enhances DNA transfection efficiency in vivo. J Biomed Sci. 2009;16:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine. 2011;30(3):523–38.

    Google Scholar 

  120. Mehta S. Electroporation. 2015. http://www.slideshare.net/SachinMehta12/electroporation.

  121. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol. 2013;3(4):39–44.

    Google Scholar 

  122. Herrero MJ, Alino SF. Naked DNA Liver delivery by hydrodynamic injection. Gene Ther Rev. 2009. http://genetherapyreview.com/gene-therapy-technology/naked-DNA-liver-delivery-by-hydrodynamic-injection.

Download references

Acknowledgements

This work was partially supported by project SAF2011-27002 from Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador F. Aliño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Herrero, M.J., Sendra, L., Miguel, A., Aliño, S.F. (2017). Physical Methods of Gene Delivery. In: Brunetti-Pierri, N. (eds) Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-53457-2_6

Download citation

Publish with us

Policies and ethics