Advertisement

The Perceived Assortativity of Social Networks: Methodological Problems and Solutions

Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Networks describe a range of social, biological and technical phenomena. An important property of a network is its degree correlation or assortativity, describing how nodes in the network associate based on their number of connections. Social networks are typically thought to be distinct from other networks in being assortative (possessing positive degree correlations); well-connected individuals associate with other well-connected individuals, and poorly connected individuals associate with each other. We review the evidence for this in the literature and find that, while social networks are more assortative than non-social networks, only when they are built using group-based methods do they tend to be positively assortative. Non-social networks tend to be disassortative. We go on to show that connecting individuals due to shared membership of a group, a commonly used method, biases towards assortativity unless a large enough number of censuses of the network are taken. We present a number of solutions to overcoming this bias by drawing on advances in sociological and biological fields. Adoption of these methods across all fields can greatly enhance our understanding of social networks and networks in general.

Keywords

Assortativity Degree assortativity Degree correlation Null models Social networks 

References

  1. 1.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99, 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Krause, J., Croft, D.P., James, R.: Social network theory in the behavioural sciences: potential applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007)CrossRefGoogle Scholar
  3. 3.
    Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001)CrossRefGoogle Scholar
  4. 4.
    Nemeth, R.J., Smith, D.A.: International trade and world-system structure: a multiple network analysis. Rev. (Fernand Braudel Cent). 8, 517–560 (2010)Google Scholar
  5. 5.
    Snyder, D., Kick, E.L.: Structural position in the world system and economic growth, 1955–1970: a multiple-network analysis of transactional interactions. Am. J. Sociol. 84, 1096–1126 (1979)CrossRefGoogle Scholar
  6. 6.
    Kapferer, B.: In: Boissevain, J., Mitchell, J.C. (eds.) Norms and the Manipulation of Relationships in a Work Setting, pp. 83–110. Netw. Anal. Stud. Hum. Interact. Mouton, Paris (1969)Google Scholar
  7. 7.
    Thurman, B.: In the office: networks and coalitions. Soc. Networks. 2, 47–63 (1979)CrossRefGoogle Scholar
  8. 8.
    Voelkl, B., Kasper, C.: Social structure of primate interaction networks facilitates the emergence of cooperation. Biotechnol. Lett. 5, 462–464 (2009)Google Scholar
  9. 9.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 473, (1977)Google Scholar
  10. 10.
    Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 2, 1–5 (2002)Google Scholar
  11. 11.
    Hasegawa, T., Konno, K., Nemoto, K.: Robustness of correlated networks against propagating attacks. Eur. Phys. J. B. 85, 1–9 (2012)CrossRefGoogle Scholar
  12. 12.
    Jing, Z., Lin, T., Hong, Y., et al.: The effects of degree correlations on network topologies and robustness. Chin. Phys. 16, 3571–3580 (2007)CrossRefGoogle Scholar
  13. 13.
    Di Bernado, M., Garofalo, F., Sorrentino, F.: Effects of degree correlation on the sychronization of networks of oscillators. Int. J. Bifurcation Chaos. 17, 3499–3506 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gallos, L., Song, C., Makse, H.: Scaling of degree correlations and its influence on diffusion in scale-free networks. Phys. Rev. Lett. 100, 248701 (2008)CrossRefGoogle Scholar
  15. 15.
    Newman, M., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E. 68, 036122 (2003)CrossRefGoogle Scholar
  16. 16.
    Whitney, D., Alderson, D.: Are technological and social networks really different? Unifying Themes Complex Syst. 6, 74–81 (2008)Google Scholar
  17. 17.
    Estrada, E.: Combinatorial study of degree assortativity in networks. Phys. Rev. E. 84, 047101 (2011)CrossRefGoogle Scholar
  18. 18.
    Newman, M.: Mixing patterns in networks. Phys. Rev. E. 67, 026126 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution of an Internet dating community. Soc. Networks. 26, 155–174 (2004)CrossRefGoogle Scholar
  20. 20.
    Mac Carron, P., Kenna, R.: Universal properties of mythological networks. EPL Europhys. Lett. 99, 28002 (2012)CrossRefGoogle Scholar
  21. 21.
    Lusseau, D., Newman, M.: Identifying the role that animals play in their social networks. Proc. R. Soc. B Biol. Sci. 271, S477–S481 (2004)CrossRefGoogle Scholar
  22. 22.
    Hu, H.-B., Wang, X.-F.: Disassortative mixing in online social networks. EPL Europhys. Lett. 86, 18003 (2009)CrossRefGoogle Scholar
  23. 23.
    Araújo, E.B., Moreira, A.A., Furtado, V., et al.: Collaboration networks from a large CV database: dynamics, topology and bonus impact. PLoS One. 9, e90537 (2014)CrossRefGoogle Scholar
  24. 24.
    Furtenbacher, T., Arendás, P., Mellau, G., Császár, A.G.: Simple molecules as complex systems. Sci. Rep. 4, 4654 (2014)CrossRefGoogle Scholar
  25. 25.
    Litvak, N., van der Hofstad, R.: Uncovering disassortativity in large scale-free networks. Phys. Rev. E. 87, 022801 (2013)CrossRefGoogle Scholar
  26. 26.
    Mac Carron P, Kenna R. A quantitative approach to comparative mythology. nestor.coventry.ac.uk (2013)
  27. 27.
    Palathingal, B., Chirayath, J.: Clustering similar questions in social question answering services. In: Shan, L.P., Cao, T.H. (eds.) The 16th Pacific Asia Conference on Information Systems (PACIS), USA, 13–15 July 2012 (2012)Google Scholar
  28. 28.
    Thedchanamoorthy, G., Piraveenan, M., Kasthuriratna, D., Senanayake, U.: Node assortativity in complex networks: an alternative approach. Proc. Comput. Sci. 29, 2449–2461 (2014)CrossRefGoogle Scholar
  29. 29.
    Franks, D.W., Ruxton, G.D., James, R.: Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2009)CrossRefGoogle Scholar
  30. 30.
    Piraveenan, M., Prokopenko, M., Zomaya, A.: Assortative mixing in directed biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 66–78 (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Ciotti, V., Bianconi, G., Capocci, A., et al.: Degree correlations in signed social networks. Phys. A Stat. Mech. Appl. 422, 25–39 (2015)CrossRefGoogle Scholar
  32. 32.
    Ugander J, Karrer B, Backstrom L, Marlow C. The anatomy of the facebook social graph. arXiv Prepr arXiv. 1–17 (2011)Google Scholar
  33. 33.
    Manno, T.G.: Social networking in the Columbian ground squirrel, Spermophilus columbianus. Anim. Behav. 75, 1221–1228 (2008)CrossRefGoogle Scholar
  34. 34.
    Wang G, Wang B, Wang T, et al.. Whispers in the dark. In: Proceedings of the 2014 Conference on Internet Measurement Conference—IMC ’14, ACM Press, New York, NY, pp. 137–150 (2014)Google Scholar
  35. 35.
    Shan, W., Liu, C., Yu, J.: Features of the discipline knowledge network: evidence from China. Technol. Econ. Dev. Econ. 20, 45–64 (2014)CrossRefGoogle Scholar
  36. 36.
    Sosa, S.: Structural architecture of the social network of a non-human primate (Macaca sylvanus): a study of its topology in La Forêt des Singes, Rocamadour. Folia Primatol. (Basel). 85, 154–163 (2014)CrossRefGoogle Scholar
  37. 37.
    Lima A, Rossi L, Musolesi M. Coding Together at Scale: GitHub as a Collaborative Social Network. In: Proceedings of 8th AAAI International Conference on Weblogs and Social Media (ICWSM) (2014)Google Scholar
  38. 38.
    Wiszniewski, J., Lusseau, D., Möller, L.M.: Female bisexual kinship ties maintain social cohesion in a dolphin network. Anim. Behav. 80, 895–904 (2010)CrossRefGoogle Scholar
  39. 39.
    Farine, D.R., Aplin, L.M., Sheldon, B.C., Hoppitt, W.: Interspecific social networks promote information transmission in wild songbirds. Proc. R. Soc. B. 282, 20142804 (2015)CrossRefGoogle Scholar
  40. 40.
    Illenberger, J., Flötteröd, G.: Estimating network properties from snowball sampled data. Soc. Networks. 34(4), 701–711 (2012)CrossRefGoogle Scholar
  41. 41.
    Kossinets, G.: Effects of missing data in social networks. Soc. Networks. 28, 247–268 (2006)CrossRefGoogle Scholar
  42. 42.
    Whitehead, H.: Analysing Animal Societies: Quantatitive Methods for Vertebrate Social Analysis. The University Chigaco Press, Chicago (2008)CrossRefGoogle Scholar
  43. 43.
    Lusseau, D., Wilson, B., Hammond, P.S., et al.: Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006)CrossRefGoogle Scholar
  44. 44.
    Croft, D.P., James, R., Thomas, P.O.R., et al.: Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 59, 644–650 (2006)CrossRefGoogle Scholar
  45. 45.
    Tsouchnika, M., Argyrakis, P.: Network of participants in European research: accepted versus rejected proposals. Eur. Phys. J. B. 87, 292 (2014)CrossRefGoogle Scholar
  46. 46.
    Mena-Chalco, J.P., Digiampietri, L.A., Lopes, F.M., Cesar, R.M.: Brazilian bibliometric coauthorship networks. J. Assoc. Inf. Sci. Technol. 65, 1424–1445 (2014)CrossRefGoogle Scholar
  47. 47.
    Mohman, Y.T., Wang, A., Chen, H.: Statistical analysis of the airport network of Pakistan. Pramana. 85, 173–183 (2015)CrossRefGoogle Scholar
  48. 48.
    Im, K., Paldino, M.J., Poduri, A., et al.: Altered white matter connectivity and network organization in polymicrogyria revealed by individual gyral topology-based analysis. Neuroimage. 86, 182–193 (2014)CrossRefGoogle Scholar
  49. 49.
    Lee, I., Kim, E., Marcotte, E.M.: Modes of interaction between individuals dominate the topologies of real world networks. PLoS One. 10, e0121248 (2015)CrossRefGoogle Scholar
  50. 50.
    Spitz, A., Horvát, E.-Á.: Measuring long-term impact based on network centrality: unraveling cinematic citations. PLoS One. 9, e108857 (2014)CrossRefGoogle Scholar
  51. 51.
    Aguirre-von-Wobeser, E., Soberón-Chávez, G., Eguiarte, L.E., et al.: Two-role model of an interaction network of free-living γ-proteobacteria from an oligotrophic environment. Environ. Microbiol. 16, 1366–1377 (2014)CrossRefGoogle Scholar
  52. 52.
    Jiang, B., Duan, Y., Lu, F., et al.: Topological structure of urban street networks from the perspective of degree correlations. Environ. Plan. B Plan. Des. 41, 813–828 (2014)CrossRefGoogle Scholar
  53. 53.
    Mussmann S, Moore J, Pfeiffer JJ, Neville J. Assortativity in Chung Lu random graph models. In: Proceedings of the 8th Workshop on Social Network Mining and Analysis—SNAKDD’14, ACM Press, New York, NY, pp. 1–8 (2014)Google Scholar
  54. 54.
    Yang R.. Modifying network assortativity with degree preservation. In: 29th International Conference on Computers and Their Applications. CATA 2014, International Society for Computers and Their Applications, Winona, MN, pp. 35–40 (2014)Google Scholar
  55. 55.
    Croft, D.P., James, R., Krause, J.: Exploring Animal Social Networks. Princeton University Press, Oxford (2008)CrossRefGoogle Scholar
  56. 56.
    Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 06, 565–573 (2003)CrossRefGoogle Scholar
  57. 57.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U. S. A. 98, 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature. 393, 440–442 (1998)CrossRefGoogle Scholar
  59. 59.
    Aplin, L.M., Farine, D.R., Morand-Ferron, J., Sheldon, B.C.: Social networks predict patch discovery in a wild population of songbirds. Proc. Biol. Sci. 279, 4199–4205 (2012)CrossRefGoogle Scholar
  60. 60.
    Lusseau, D.: The emergent properties of a dolphin social network. Proc. Biol. Sci. 270, 186–188 (2003)CrossRefGoogle Scholar
  61. 61.
    Mourier, J., Vercelloni, J., Planes, S.: Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012)CrossRefGoogle Scholar
  62. 62.
    Newman, M.: Coauthorship networks and patterns of scientific collaboration. Proc. Natl. Acad. Sci. U. S. A. 101, 5200–5205 (2004)CrossRefGoogle Scholar
  63. 63.
    Whitehead, H., Dufault, S.: Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv. Study Behav. 28, 33–73 (1999)Google Scholar
  64. 64.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna (2013)Google Scholar
  65. 65.
    Perreault, C.: A note on reconstructing animal social networks from independent small-group observations. Anim. Behav. 80, 551–562 (2010)CrossRefGoogle Scholar
  66. 66.
    Bejder, L., Fletcher, D., Bräger, S.: A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998)CrossRefGoogle Scholar
  67. 67.
    Sundaresan, S.R., Fischhoff, I.R., Dushoff, J.: Avoiding spurious findings of nonrandom social structure in association data. Anim. Behav. 77, 1381–1385 (2009)CrossRefGoogle Scholar
  68. 68.
    Krause, S., Mattner, L., James, R., et al.: Social network analysis and valid Markov chain Monte Carlo tests of null models. Behav. Ecol. Sociobiol. 63, 1089–1096 (2009)CrossRefGoogle Scholar
  69. 69.
    Aplin, L.M., Farine, D.R., Morand-Ferron, J., et al.: Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 (2013)CrossRefGoogle Scholar
  70. 70.
    Wey, T.W., Burger, J.R., Ebensperger, L.A., Hayes, L.D.: Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). Anim. Behav. 85, 1407–1414 (2013)CrossRefGoogle Scholar
  71. 71.
    Krackhardt, D.: Predicting with networks: nonparametric multiple regression analysis of dyadic data. Soc. Networks. 10, 359–381 (1988)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Hanhijarvi S, Garriga GC, Puolmakai K. Randomization techniques for graphs. In: Proceedings of the 9th SIAM International Conference on Data Mining (SDM ‘09), pp. 780–791 (2009)Google Scholar
  73. 73.
    La Fond T, Neville J. Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of the 19th international conference on World wide web—WWW ‘10, ACM Press, New York, NY, p. 601 (2010)Google Scholar
  74. 74.
    Farine, D.R.: Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Anim. Behav. 89, 141–153 (2014)CrossRefGoogle Scholar
  75. 75.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)CrossRefGoogle Scholar
  76. 76.
    Garton, L., Haythornthwaite, C., Wellman, B.: Studying online social networks. J. Comput. Mediated Commun. (2006). doi: 10.1111/j.1083-6101.1997.tb00062.x Google Scholar
  77. 77.
    Rowe R, Creamer G, Hershkop S, Stolfo SJ. Automated social hierarchy detection through email network analysis. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis–WebKDD/SNA-KDD ‘07, ACM Press, New York, NY, pp. 109–117 (2007)Google Scholar
  78. 78.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Networks. 32, 245–251 (2010)CrossRefGoogle Scholar
  79. 79.
    Noldus, R., Van Mieghem, P.: Assortativity in complex networks. J. Complex Networks. 3, 507–542 (2015)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Iturria-Medina, Y., Canales-Rodríguez, E.J., Melie-García, L., et al.: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage. 36, 645–660 (2007)CrossRefGoogle Scholar
  81. 81.
    Krivitsky, P.: Exponential-family random graph models for valued networks. Electron. J. Stat. 6, 1100–1128 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Krivitsky P., ergm.count: Fit, simulate and diagnose exponential-family models for networks with count edges. The Statnet Project (2015). http://www.statnet.org. R package version 3.2.2. http://CRAN.R-project.org/package=ergm.count
  83. 83.
    De Choudhury M, Mason W. Inferring relevant social networks from interpersonal communication. In: Proceedings of the 19th International Conference on World wide web, pp. 301–310 (2010) Google Scholar
  84. 84.
    Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R.: Uncovering space-independent communities in spatial networks. Proc. Natl. Acad. Sci. U. S. A. 7663–7668 (2011)Google Scholar
  85. 85.
    Peruani, F., Tabourier, L.: Directedness of information flow in mobile phone communication networks. PLoS One. 6, e28860 (2011)CrossRefGoogle Scholar
  86. 86.
    Wey, T.W., Blumstein, D.T.: Social cohesion in yellow-bellied marmots is established through age and kin structuring. Anim. Behav. 79, 1343–1352 (2010)CrossRefGoogle Scholar
  87. 87.
    Krause, J., Krause, S., Arlinghaus, R., et al.: Reality mining of animal social systems. Trends Ecol. Evol. 28, 1–11 (2013)CrossRefGoogle Scholar
  88. 88.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10, 255–268 (2005)CrossRefGoogle Scholar
  89. 89.
    Böhm, M., Hutchings, M.R., White, P.C.L.: Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS One. 4, e5016 (2009)CrossRefGoogle Scholar
  90. 90.
    Hamede, R.K., Bashford, J., McCallum, H., Jones, M.: Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009)CrossRefGoogle Scholar
  91. 91.
    Rutz, C., Burns, Z.T., James, R., et al.: Automated mapping of social networks in wild birds. Curr. Biol. 22, R669–R671 (2012)CrossRefGoogle Scholar
  92. 92.
    Boyland, N.K., James, R., Mlynski, D.T., et al.: Spatial proximity loggers for recording animal social networks: consequences of inter-logger variation in performance. Behav. Ecol. Sociobiol. 67, 1877–1890 (2013)CrossRefGoogle Scholar
  93. 93.
    Drewe, J.A., Weber, N., Carter, S.P., et al.: Performance of proximity loggers in recording intra- and inter-species interactions: a laboratory and field-based validation study. PLoS One. 7, e39068 (2012)CrossRefGoogle Scholar
  94. 94.
    Zhou, S., Mondragón, R.: The rich-club phenomenon in the Internet topology. IEEE Commun. Lett. 1–3 (2004)Google Scholar
  95. 95.
    Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A.: Detecting rich-club ordering in complex networks. Nat. Phys. 2, 1–18 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Environment and Sustainability InstituteUniversity of ExeterPenrynUK
  3. 3.Department of BiologyUniversity of YorkYorkUK
  4. 4.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations