Skip to main content

Local Broadcasting of Quantum Correlations

  • Chapter
  • First Online:
Lectures on General Quantum Correlations and their Applications

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Operations that are trivial in the classical world, like accessing information without introducing any change or disturbance, or like copying information, become non-trivial in the quantum world. In this chapter we will discuss several limitations in the local redistributing correlations, when it comes to dealing with bipartite quantum states. In particular, we focus on the task of local broadcasting, by discussing relevant no-go theorems, and by quantifying the non-classicality of correlations in terms of the degree to which local broadcasting is possible in an approximate fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A large part of the study about optimal cloners deals with single system, where it is natural to discuss the cloning of a set of states, or universal cloners, where the figure of merit is either an average, or state-independent (for pure states).

References

  1. W.K. Wootters, W.H. Zurek, Nature 299(5886), 802 (1982)

    Article  ADS  Google Scholar 

  2. D. Dieks, Phys. Lett. A 92(6), 271 (1982). doi:10.1016/0375-9601(82)90084-6

  3. M.M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  5. H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, B. Schumacher, Phys. Rev. Lett. 76(15), 2818 (1996)

    Article  ADS  Google Scholar 

  6. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009). doi:10.1103/RevModPhys.81.865

  7. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100(9), 090502 (2008)

    Article  ADS  Google Scholar 

  8. V. Vedral, Rev. Mod. Phys. 74, 197 (2002). doi:10.1103/RevModPhys.74.197

  9. M.M. Wilde, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 471(2182) (2015). doi:10.1098/rspa.2015.0338

  10. M. Junge, R. Renner, D. Sutter, M.M. Wilde, A. Winter (2015). arXiv:1509.07127

  11. D. Petz, Commun. Math. Phys. 105(1), 123 (1986)

    Article  ADS  Google Scholar 

  12. D. Petz, Q. J. Math. 39(1), 97 (1988)

    Article  Google Scholar 

  13. P. Hayden, R. Jozsa, D. Petz, A. Winter, Commun. Math. Phys. 246(2), 359 (2004)

    Article  ADS  Google Scholar 

  14. O. Fawzi, R. Renner, Commun. Math. Phys. 340(2), 575 (2015)

    Article  ADS  Google Scholar 

  15. D. Sutter, O. Fawzi, R. Renner, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 472(2186) (2016). doi:10.1098/rspa.2015.0623

  16. S. Luo, Lett. Math. Phys. 92(2), 143 (2010). doi:10.1007/s11005-010-0389-1

  17. S. Luo, W. Sun, Phys. Rev. A 82(1), 012338 (2010)

    Article  ADS  Google Scholar 

  18. C.M. Caves, C.A. Fuchs, R. Schack, J. Math. Phys. 43(9), 4537 (2002). doi:10.1063/1.1494475

  19. C. Ferrie, J. Emerson, New J. Phys. 11(6), 063040 (2009). http://stacks.iop.org/1367-2630/11/i=6/a=063040

  20. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  21. L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    Article  ADS  Google Scholar 

  22. M. Hayashi, Quantum Information (Springer, Berlin, 2006)

    Google Scholar 

  23. K.P. Seshadreesan, M.M. Wilde, Phys. Rev. A 92, 042321 (2015). doi:10.1103/PhysRevA.92.042321

  24. N. Gisin, S. Massar, Phys. Rev. Lett. 79(11), 2153 (1997)

    Article  ADS  Google Scholar 

  25. R.F. Werner, Phys. Rev. A 58, 1827 (1998). doi:10.1103/PhysRevA.58.1827

  26. M. Piani, Phys. Rev. Lett. 117, 080401 (2016). doi:10.1103/PhysRevLett.117.080401

  27. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  28. J. Watrous (2012). arXiv:1207.5726

  29. F.G. Brandão, M. Piani, P. Horodecki, Nat. Commun. 6, 7908 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The productions of these notes was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 661338. I would like to thank the Institute for Quantum Computing at the University of Waterloo for its hospitality during the completion of these notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Piani, M. (2017). Local Broadcasting of Quantum Correlations. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_9

Download citation

Publish with us

Policies and ethics