Measurement-Induced Nonlocality and Quantum Correlations Under Local Operations

  • Xueyuan Hu
  • Ming-Liang Hu
  • Heng FanEmail author
Part of the Quantum Science and Technology book series (QST)


One significant feature of quantum theory is the existence of non-local quantum correlations which have no classical counterpart. There are various measures quantifying quantum correlations from different view points. Here, we present some recent developments about the quantum correlation measures known as measurement-induced nonlocality, in the sense that quantum measurement may destroy the quantum correlations for quantum states resulting in measures of nonlocality. Quantum correlations remain invariant under local unitary operations, they may decrease under general local operations, however, sometimes they can also show increasing for some local operations. We will review the properties of quantum correlations under local operations.



This work is supported by MOST (2016YFA0302104, 2016YFA0300600), NSFC (91536108, 11504205, 11205121), CAS (XDB01010000, XDB21030300), New Star Project of Science and Technology of Shaanxi Province (2016KJXX-27), the Fundamental Research Funds of Shandong University under Grant No. 2014TB018.


  1. 1.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Genovese, Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    L. Masanes, Y.C. Liang, A.C. Doherty, All bipartite entangled states display some hidden nonlocality. Phys. Rev. Lett. 100, 090403 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. Modi, A. Brodutch, H. Cable, Z. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Popescu, R. Rohrlich, Nonlocality as an axiom. Found. Phys. 24, 379 (1994)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Popescu, Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Fan, Y.N. Wang, L. Jing, J.D. Yue, H.D. Shi, Y.L. Zhang, L.Z. Mu, Quantum cloning machines and the applications. Phys. Rep. 544, 241–322 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Girolami, G. Adesso, Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106, 220403 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M.F. Cornelio, M.C. de Oliveira, F.F. Fanchini, Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107, 020502 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    L. Miŝta Jr., R. Tatham, D. Girolami, N. Korolkova, G. Adesso, Measurement-induced disturbances and nonclassical correlations of Gaussian states. Phys. Rev. A 83, 042325 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Luo, S. Fu, Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    M.L. Hu, H. Fan, Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M.L. Hu, H. Fan, Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343–2353 (2012)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Z. Xi, X. Wang, Y. Li, Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    L. Li, Q.W. Wang, S.Q. Shen, M. Li, Measurement-induced nonlocality based on Wigner-Yanase skew information. Europhys. Lett. 114, 10007 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Guo, Measurement-induced nonlocality over two-sided projective measurements. Int. J. Mod. Phys. B 27, 1350067 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    S. Luo, S. Fu, Global effects of quantum states induced by locally invariant measurements. Europhys. Lett. 92, 20004 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Rana, P. Parashar, Geometric discord and measurement-induced nonlocality for well known bound entangled states. Quantum Inf. Process. 12, 2523–2534 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S.Y. Mirafzali, I. Sargolzahi, A. Ahanj, K. Javidan, M. Sarbishaei, Measurement-induced nonlocality for an arbitrary bipartite state. Quantum Inf. Comput. 13, 479–489 (2013)MathSciNetGoogle Scholar
  25. 25.
    R. Jozsa, Fidelity for mixed quantum states. J. Modern Opt. 41, 2315–2323 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    E.P. Wigner, M.M. Yanase, Information contents of distributions. Proc. Natl. Acad. Sci. U. S. A. 49, 910–918 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    S. Wu, J. Zhang, C. Yu, H. Song, Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344–347 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Marcus, B.N. Moyls, Linear transformations on algebras of matrices. Can. J. Math. 11, 61 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    X.Y. Hu, H. Fan, D.L. Zhou, W.M. Liu, Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    X. Hu, H. Fan, D.L. Zhou, W.M. Liu, Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    X. Hu, H. Fan, D.L. Zhou, W.M. Liu, Superadditivity of quantum-correlating power. Phys. Rev. A 88, 012315 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    X. Hu, H. Fan, Effect of local channels on quantum steering ellipsoids. Phys. Rev. A 91, 022301 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringShandong UniversityJinanChina
  2. 2.School of Science, Xi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.Institute of Physics, Chinese Academy of SciencesBeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations