Monogamy of Quantum Correlations - A Review

  • Himadri Shekhar Dhar
  • Amit Kumar Pal
  • Debraj Rakshit
  • Aditi Sen(De)
  • Ujjwal SenEmail author
Part of the Quantum Science and Technology book series (QST)


Monogamy is an intrinsic feature of quantum correlations that gives rise to several interesting quantum characteristics which are not amenable to classical explanations. The monogamy property imposes physical restrictions on unconditional sharability of quantum correlations between different parts of a multipartite quantum system, and thus has a direct bearing on the cooperative properties of multipartite states, including those of large many-body systems. On the contrary, a certain party can be maximally classical correlated with an arbitrary number of parties. In recent years, the monogamy property of quantum correlations has been applied to understand several key aspects of quantum physics, including distribution of quantum resources, security in quantum communication, critical phenomena, and quantum biology. In this chapter, we look at some of the salient developments and applications in quantum physics that have been closely associated with the monogamy of quantum discord, and “discord-like” quantum correlation measures.


  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    K. Modi, A. Brodutch, H. Cable, T. Patrek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    B.M. Terhal, Is entanglement monogamous? IBM J. Res. Dev. 48, 71 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Sen(De) and U. Sen, Quantum advantage in communication networks. Phys. News 40, 17 (2010)Google Scholar
  6. 6.
    R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    H.J. Briegel, D.E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R. Augusiak, F.M. Cucchietti, M. Lewenstein, Many body physics from a quantum information perspective, in Modern Theories of Many-Particle Systems in Condensed Matter Physics, vol. 843, Lecture notes in physics, ed. by D.C. Cabra, A. Honecker, P. Pujol (Springer, Heidelberg, 2012), pp. 245–294CrossRefGoogle Scholar
  11. 11.
    A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Kim, G. Gour, B.C. Sanders, Limitations to sharing entanglement. Contemp. Phys. 53, 417 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    D. Dieks, Communication by EPR devices. Phys. Lett. A 92, 271 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    H.P. Yuen, Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113, 405 (1986)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, B. Schumacher, Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    T.J. Osborne, F. Verstraete, General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P.M. Hayden, M. Horodecki, B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state. J. Phys. A Math. Gen. 34, 6891 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    E.M. Rains, Rigorous treatment of distillable entanglement. Phys. Rev. A 60, 173 (1999)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E.M. Rains, Bound on distillable entanglement. Phys. Rev. A 60, 179 (1999)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 8, 77 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Lee, M.S. Kim, Y.J. Park, S. Lee, Partial teleportation of entanglement in a noisy environment. J. Mod. Opt. 47, 2151 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M.B. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, B. Synak-Radtke, Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    I. Devetak, Distillation of local purity from quantum states. Phys. Rev. A 71, 062303 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Y.-C. Ou, H. Fan, Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    F.F. Fanchini, M.F. Cornelia, M.C. de Oliveira, A.O. Caldeira, Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev. A 84, 012313 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    A. Streltsov, G. Adesso, M. Piani, D. Bruß, Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    R. Prabhu, A.K. Pati, A. Sen(De), U. Sen, Conditions for monogamy of quantum correlations: Greenberger–Horne–Zeilinger versus W states. Phys. Rev. A 85, 040102(R) (2012)ADSCrossRefGoogle Scholar
  45. 45.
    G.L. Giorgi, Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    C. Lancien, S. Di Martino, M. Huber, M. Piani, G. Adesso, A. Winter, Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    K. Salini, R. Prabhu, A. Sen(De), U. Sen, Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous. Ann. Phys. 348, 297 (2014)ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    B. Toner, Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    P. Kurzyński, T. Paterek, R. Ramanathan, W. Laskowski, D. Kaszlikowski, Correlation complementarity yields bell monogamy relations. Phys. Rev. Lett. 106, 180402 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    R. Prabhu, A.K. Pati, A. Sen(De), U. Sen, Exclusion principle for quantum dense coding. Phys. Rev. A 87, 052319 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    T.R. de Oliveira, A. Saguia, M.S. Sarandy, Nonviolation of Bell’s inequality in translation invariant systems. Europhys. Lett. 104, 29901 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Z.-Y. Sun, Y.-Y. Wu, J. Xu, H.-L. Huang, B.-J. Chen, B. Wang, Violation of Bell inequality in perfect translation-invariant systems. Phys. Rev. A 88, 054101 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    R. Prabhu, A. Sen(De), U. Sen, Genuine multiparty quantum entanglement suppresses multiport classical information transmission. Phys. Rev. A 88, 042329 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    D. Sadhukhan, S. Singha Roy, D. Rakshit, A. Sen(De), U. Sen, Beating no-go theorems by engineering defects in quantum spin models. New J. Phys. 17, 043013 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)Google Scholar
  56. 56.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  57. 57.
    C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    M.D. Reid, Monogamy inequalities for the Einstein–Podolsky–Rosen paradox and quantum steering. Phys. Rev. A 88, 062108 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    A. Milne, S. Jevtic, D. Jennings, H. Wiseman, T. Rudolph, Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    S. Lee, J. Park, Monogamy of entanglement and teleportation capability. Phys. Rev. A 79, 054309 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    R. Ramanathan, A. Soeda, P. Kurzynski, D. Kaszlikowski, Generalized monogamy of contextual inequalities from the no-disturbance principle. Phys. Rev. Lett. 109, 050404 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    P. Kurzyński, A. Cabello, D. Kaszlikowski, Fundamental monogamy relation between contextuality and nonlocality. Phys. Rev. Lett. 112, 100401 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    A. Kumar, S. Singha Roy, A.K. Pal, R. Prabhu, A. Sen(De), U. Sen, Conclusive identification of quantum channels via monogamy of quantum correlations. Phys. Lett. A 380, 3588 (2016)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Chandran, D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, Regional versus global entanglement in resonating-valence-bond states. Phys. Rev. Lett. 99, 170502 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    H.S. Dhar, A. Sen(De), Entanglement in resonating valence bond states: ladder versus isotropic lattices. J. Phys. A Math. Theor. 44, 465302 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    S. Singha Roy, H.S. Dhar, D. Rakshit, A. Sen(De), U. Sen, Response to defects in multi- and bipartite entanglement of isotropic quantum spin networks, arXiv:1607.05195 (2016)
  67. 67.
    D. Sadhukhan, S. Singha Roy, D. Rakshit, R. Prabhu, A. Sen(De), U. Sen, Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain. Phys. Rev. E 93, 012131 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    M. Allegra, P. Giorda, A. Montorsi, Quantum discord and classical correlations in the bond-charge Hubbard model: quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord. Phys. Rev. B 84, 245133 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    X.-K. Song, T. Wu, L. Ye, The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model. Quantum Inf. Process. 12, 3305 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    L. Qiu, G. Tang, X.-Q. Yang, A.-M. Wang, Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic XXZ model. Europhys. Lett. 105, 30005 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    M. Qin, Z.-Z. Ren, X. Zhang, Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model. Quantum Inf. Process. 15, 255 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    K.R.K. Rao, H. Katiyar, T.S. Mahesh, A. Sen(De), U. Sen, A. Kumar, Multipartite quantum correlations reveal frustration in a quantum Ising spin system. Phys. Rev. A 88, 022312 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    J. Zhu, S. Kais, A. Aspuru-Guzik, S. Rodriques, B. Brock, P.J. Love, Multipartite quantum entanglement evolution in photosynthetic complexes. J. Chem. Phys. 137, 074112 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    T. Chanda, U. Mishra, A. Sen(De), U. Sen, Time dynamics of multiparty quantum correlations indicate energy transfer route in light-harvesting complexes, arXiv:1412.6519 (2014)
  75. 75.
    A. Bera, A. Kumar, D. Rakshit, R. Prabhu, A. Sen(De), U. Sen, Information complementarity in multipartite quantum states and security in cryptography. Phys. Rev. A 93, 032338 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)ADSCrossRefGoogle Scholar
  77. 77.
    M.N. Bera, R. Prabhu, A. Sen(De), U. Sen, Characterization of tripartite quantum states with vanishing monogamy score. Phys. Rev. A 86, 012319 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    R. Prabhu, A.K. Pati, A. Sen(De), U. Sen, Relating monogamy of quantum correlations and multisite entanglement. Phys. Rev. A 86, 052337 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    Y.-K. Bai, Y.-F. Xu, Z.D. Wang, General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    Y.-C. Ou, Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75, 034305 (2007)ADSCrossRefGoogle Scholar
  81. 81.
    X.-J. Ren, W. Jiang, Entanglement monogamy inequality in a \(2 \otimes 2 \otimes 4\) system. Phys. Rev. A 81, 024305 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    C.-S. Yu, H.-S. Song, Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    J.-H. Huang, S.-Y. Zhu, Entanglement monogamy in a three-qubit state. Phys. Rev. A 78, 012325 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Y.-C. Ou, H. Fan, S.-M. Fei, Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78, 012311 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    M.F. Cornelio, Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    B. Regula, S.D. Martino, S. Lee, G. Adesso, Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113, 110501 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    C. Eltschka, A. Osterloh, J. Siewert, Possibility of generalized monogamy relations for multipartite entanglement beyond three qubits. Phys. Rev. A 80, 032313 (2009)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    C. Eltschka, J. Siewert, Quantifying entanglement resources. J. Phys. A Math. Theor. 47, 424005 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    G. Gour, N.R. Wallach, All maximally entangled four qubits states. J. Math. Phys. 51, 112201 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    X.-N. Zhu, S.-M. Fei, Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    Y. Luo, Y. Li, Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    B. Regula, A. Osterloh, G. Adesso, Strong monogamy inequalities for four qubits. Phys. Rev. A 93, 052338 (2016)ADSCrossRefGoogle Scholar
  93. 93.
    Y.-K. Bai, D. Yang, Z.D. Wang, Multipartite quantum correlation and entanglement in four-qubit pure states. Phys. Rev. A 76, 022336 (2007)ADSCrossRefGoogle Scholar
  94. 94.
    C. Eltschka, J. Siewert, Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114, 140402 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    K. Chen, S. Albeverio, S.M. Fei, Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    S. Karmakar, A. Sen, A. Bhar, D. Sarkar, Strong monogamy conjecture in a four-qubit system. Phys. Rev. A 93, 012327 (2016)ADSCrossRefGoogle Scholar
  97. 97.
    J.H. Choi, J.S. Kim, Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    D.P. DiVincenzo, C.A. Fuchs, H. Mabuchi, J.A. Smolin, A. Thapliyal, A. Uhlmann, Entanglement of assistance, in Quantum Computing and Quantum Communications, vol. 1509, Lecture notes in computer science, ed. by C.P. Williams (Springer, Heidelberg, 1999), pp. 247–257CrossRefGoogle Scholar
  99. 99.
    M. Christandl, A. Winter, “Squashed entanglement” - an additive entanglement measure. J. Math. Phys. (N.Y.) 45, 829 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    M. Koashi, A. Winter, Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    G. Gour, D.A. Meyer, B.C. Sanders, Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)ADSCrossRefGoogle Scholar
  102. 102.
    X.-N. Zhu, S.-M. Fei, Generalized monogamy relations of concurrence for \(N\)-qubit systems. Phys. Rev. A 92, 062345 (2015)ADSCrossRefGoogle Scholar
  103. 103.
    T.R. de Oliveira, M.F. Cornelio, F.F. Fanchini, Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    Z.-G. Li, S.-M. Fei, S. Albeverio, W.M. Liu, Bound of entanglement of assistance and monogamy constraints. Phys. Rev. A 80, 034301 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    I. Devetak, A. Winter, Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    B.M. Terhal, M. Horodecki, D.W. Leung, D.P. DiVincenzo, The entanglement of purification. J. Math. Phys. 43, 4286 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    S. Bagchi, A.K. Pati, Monogamy, polygamy, and other properties of entanglement of purification. Phys. Rev. A 91, 042323 (2015)ADSCrossRefGoogle Scholar
  108. 108.
    J.S. Kim, B.C. Sanders, Monogamy of multi-qubit entanglement in terms of Rnyi and Tsallis entropies, in TQC10 Proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography (Springer, Heidelberg, 2011), pp. 159–167Google Scholar
  109. 109.
    Y. Luo, T. Tian, L.-H. Shao, Y. Li, General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A. 93, 062340 (2016)ADSCrossRefGoogle Scholar
  110. 110.
    G.-M. Yuan, W. Song, M. Yang, D.-C. Li, J.-L. Zhao, Z.-L. Cao, Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement. Sci. Rep. 6, 28719 (2016)ADSCrossRefGoogle Scholar
  111. 111.
    G. Adesso, F. Illuminati, Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8, 15 (2006)ADSCrossRefGoogle Scholar
  112. 112.
    G. Adesso, A. Serafini, F. Illuminati, Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)ADSCrossRefGoogle Scholar
  113. 113.
    G. Adesso, F. Illuminati, Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Phys. Rev. Lett. 99, 150501 (2007)ADSzbMATHCrossRefGoogle Scholar
  114. 114.
    T. Hiroshima, G. Adesso, F. Illuminati, Monogamy Inequality for distributed Gaussian entanglement. Phys. Rev. Lett. 98, 050503 (2007)ADSCrossRefGoogle Scholar
  115. 115.
    G. Adesso, F. Illuminati, Genuine multipartite entanglement of symmetric Gaussian states: strong monogamy, unitary localization, scaling behavior, and molecular sharing structure. Phys. Rev. A 78, 042310 (2008)Google Scholar
  116. 116.
    W.H. Zurek, in Quantum Optics, Experimental Gravitation and Measurement Theory, ed. by P. Meystre, M.O. Scully (Plenum, New York, 1983)Google Scholar
  117. 117.
    S.M. Barnett, S.J.D. Phoenix, Entropy as a measure of quantum optical correlation. Phys. Rev. A 40, 2404 (1989)ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    B. Schumacher, M.A. Nielsen, Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    Y. Huang, Computing quantum discord in NP-complete. New J. Phys. 16, 033027 (2014)ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010); ibid. 82, 069902(E) (2010)Google Scholar
  123. 123.
    M. Ali, Quantum discord for a two-parameter class of states in \(2 \otimes d\) quantum systems. J. Phys. A Math. Theor. 43, 495303 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    X.-M. Lu, J. Ma, Z. Xi, X. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)ADSCrossRefGoogle Scholar
  125. 125.
    D. Girolami, G. Adesso, Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar
  126. 126.
    Q. Chen, C. Zhang, S. Yu, X.X. Yi, C.H. Oh, Quantum discord of two-qubit \(X\) states. Phys. Rev. A 84, 042313 (2011)ADSCrossRefGoogle Scholar
  127. 127.
    S. Vinjanampathy, A.R.P. Rau, Calculation of quantum discord for qubit-qudit or N qubits. J. Phys. A Math. Theor. 45, 095303 (2012)ADSzbMATHCrossRefGoogle Scholar
  128. 128.
    T. Chanda, T. Das, D. Sadhukhan, A.K. Pal, A. Sen De, U. Sen, Reducing computational complexity of quantum correlations. Phys. Rev. A 92, 062301 (2015)ADSCrossRefGoogle Scholar
  129. 129.
    S. Luo, S. Fu, Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    B. Dakić, V. Vedral, C̆. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)Google Scholar
  131. 131.
    M. Piani, Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)ADSCrossRefGoogle Scholar
  132. 132.
    T. Debarba, T.O. Maciel, R.O. Vianna, Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)ADSCrossRefGoogle Scholar
  133. 133.
    S. Rana, P. Parashar, Comment on “witnessed entanglement and the geometric measure of quantum discord”. Phys. Rev. A 87, 016301 (2013)ADSCrossRefGoogle Scholar
  134. 134.
    T. Debarba, T.O. Maciel, R.O. Vianna, Reply to “comment on ‘witnessed entanglement and the geometric measure of quantum discord’ ”. Phys. Rev. A 87, 046301 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    F.M. Paula, T.R. de Oliveira, M.S. Sarandy, Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    A. Zeilinger, M.A. Horne, D.M. Greenberger, in Proceedings of Squeezed States and Quantum Uncertainty, ed. by D. Han, Y.S. Kim, W.W. Zachary, vol. 3135 (NASA Conference Publication, 1992), p. 73Google Scholar
  137. 137.
    A. Sen(De), U. Sen, M. Wiesniak, D. Kaszlikowski, M. Zukowski, Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states. Phys. Rev. A 68, 062306 (2003)ADSMathSciNetCrossRefGoogle Scholar
  138. 138.
    X.-J. Ren, H. Fan, Non-monogamy of quantum discord and upper bounds for quantum correlation. Quant. Inf. Comp. 13, 469 (2013)Google Scholar
  139. 139.
    N. Li, S. Luo, Total versus quantum correlations in quantum states. Phys. Rev. A 76, 032327 (2007)ADSCrossRefGoogle Scholar
  140. 140.
    R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  141. 141.
    R.F. Werner, An application of Bell’s inequalities to a quantum state extension problem. Lett. Math. Phys. 17, 359 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)ADSCrossRefGoogle Scholar
  143. 143.
    D. Yang, A simple proof of monogamy of entanglement. Phys. Lett. A 360, 249 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    I. Devetak, A. Winter, Distilling common randomness from bipartite quantum states. IEEE Trans. Inf. Theory 50, 3183 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    L.P. Hughston, R. Jozsa, W.K. Wootters, A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14 (1993)ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    P.M. Hayden, M. Horodecki, B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state. J. Phys. A 34, 6891 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Z.H. Ma, Z.H. Chen, F.F. Fanchini, Multipartite quantum correlations in open quantum systems. New J. Phys. 15, 043023 (2013)ADSCrossRefGoogle Scholar
  148. 148.
    F.F. Fanchini, L.K. Castelano, M.F. Cornelio, M.C. de Oliveira, Locally inaccessible information as a fundamental ingredient to quantum information. New J. Phys. 14, 013027 (2012)ADSCrossRefGoogle Scholar
  149. 149.
    M. Daoud, R.A. Laamara, W. Kaydi, Multipartite quantum correlations in even and odd spin coherent states. J. Phys. A Math. Theor. 46, 395302 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New Jersey, 2006)zbMATHGoogle Scholar
  151. 151.
    W. Dür, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  152. 152.
    A. Acín, A. Andrianov, L. Costa, E. Jané, J.I. Latorre, R. Tarrach, Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)ADSCrossRefGoogle Scholar
  153. 153.
    A. Acín, D. Bruss, M. Lewenstein, A. Sanpera, Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001)ADSMathSciNetCrossRefGoogle Scholar
  154. 154.
    Y.-K. Bai, N. Zhang, M.-Y. Ye, Z.D. Wang, Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)ADSCrossRefGoogle Scholar
  155. 155.
    A. Kumar, Conditions for monogamy of quantum correlations in multipartite systems. Phys. Lett. A 380, 3044 (2016)ADSMathSciNetCrossRefGoogle Scholar
  156. 156.
    M. Horodecki, P. Horodecki, R. Horodecki, Limits for entanglement measures. Phys. Rev. Lett. 84, 2014 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    A. Kumar, R. Prabhu, A. Sen(de), U. Sen, Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)ADSMathSciNetCrossRefGoogle Scholar
  158. 158.
    R. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)ADSzbMATHCrossRefGoogle Scholar
  159. 159.
    G.H. Aguilar, J. Farías, A. Valdés-Hernández, P.H. Souto Ribeiro, L. Davidovich, S.P. Walborn, Flow of quantum correlations from a two-qubit system to its environment. Phys. Rev. A 89, 022339 (2014)ADSCrossRefGoogle Scholar
  160. 160.
    D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bells Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Kluwer Academic, Dordrecht, 1989)Google Scholar
  161. 161.
    P.K. Sarangi, I. Chakrabarty, A study of quantum correlation for three qubit states under the effect of quantum noisy channels, arXiv:1411.7579 (2014)
  162. 162.
    I. Chakrabarty, P. Agrawal, A.K. Pati, Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)ADSCrossRefGoogle Scholar
  163. 163.
    X.-K. Song, T. Wu, L. Ye, Monogamy properties of quantum discord for a three-qubit entangled state. Mod. Phys. Lett. B 27, 1350049 (2013)ADSCrossRefGoogle Scholar
  164. 164.
    S. Rana, P. Parashar, Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)ADSCrossRefGoogle Scholar
  165. 165.
    Y.-K. Bai, T.-T. Zhang, L.-T. Wang, Z.D. Wang, Correlation evolution and monogamy of two geometric quantum discords in multipartite systems. Eur. Phys. J. D 68, 274 (2014)ADSCrossRefGoogle Scholar
  166. 166.
    M. Daoud, W. Kaydi, H. El Hadfi, Distribution of geometric quantum discord in photon-added coherent states. Mod. Phys. Lett. B 29, 1550239 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    E. Majorana, Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43 (1932)zbMATHCrossRefGoogle Scholar
  168. 168.
    Sudha, A.R. Usha Devi, A.K. Rajagopal, Monogamy of quantum correlations in three-qubit pure states. Phys. Rev. A 85, 012103 (2012)Google Scholar
  169. 169.
    A.K. Rajagopal, R.W. Rendell, Separability and correlations in composite states based on entropy methods. Phys. Rev. A 66, 022104 (2002)ADSMathSciNetCrossRefGoogle Scholar
  170. 170.
    A.R. Usha Devi, A.K. Rajagopal, Generalized information theoretic measure to discern the quantumness of correlations. Phys. Rev. Lett. 100, 140502 (2008)CrossRefGoogle Scholar
  171. 171.
    A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    S. Luo, S. Fu, Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSzbMATHCrossRefGoogle Scholar
  173. 173.
    A. Sen, D. Sarkar, A. Bhar, Monogamy of measurement induced non-locality. J. Phys. A: Math. Theor. 45, 405306 (2012)zbMATHCrossRefGoogle Scholar
  174. 174.
    Z. Xi, X. Wang, Y. Li, Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)ADSCrossRefGoogle Scholar
  175. 175.
    Y. Luo, Z.-J. Xi, Y.-M. Li, Monogamy of measurement-induced nonlocality based on relative entropy. Commun. Theor. Phys. 62, 677 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    A. Sen (De), U. Sen, Channel capacities versus entanglement measures in multiparty quantum states. Phys. Rev. A 81, 012308 (2010)ADSCrossRefGoogle Scholar
  177. 177.
    A. Biswas, R. Prabhu, A. Sen (De), U. Sen, Genuine-multipartite-entanglement trends in gapless-to-gapped transitions of quantum spin systems. Phys. Rev. A 90, 032301 (2014)ADSCrossRefGoogle Scholar
  178. 178.
    C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  179. 179.
    H.C. Braga, C.C. Rulli, T.R. de Oliveira, M.S. Sarandy, Monogamy of quantum discord by multipartite correlations. Phys. Rev. A 86, 062106 (2012)ADSCrossRefGoogle Scholar
  180. 180.
    S.-Y. Liu, Y.-R. Zhang, L.-M. Zhao, W.-L. Yang, H. Fan, General monogamy property of global quantum discord and the application. Ann. Phys. 348, 256 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Y.-K. Bai, Y.-F. Xu, Z.D. Wang, Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. Phys. Rev. A 90, 062343 (2014)ADSCrossRefGoogle Scholar
  182. 182.
    F. Liu, F. Gao, S.-J. Qin, S.-C. Xie, Q.-Y. Wen, Multipartite entanglement indicators based on monogamy relations of \(n\)-qubit symmetric states. Sci. Rep. 6, 20302 (2016)ADSCrossRefGoogle Scholar
  183. 183.
    P. Pandya, A. Misra, I. Chakrabarty, Complementarity between tripartite quantum correlation and bipartite bell inequality violation in three qubit pure states, arXiv:1512.01770 (2015)
  184. 184.
    K. Sharma, T. Das, A. Sen(De), Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures. Phys. Rev. A 93, 062344 (2016)ADSCrossRefGoogle Scholar
  185. 185.
    R. Nepal, R. Prabhu, A. Sen(De), U. Sen, Maximally-dense-coding-capable quantum states. Phys. Rev. A 87, 032336 (2013)ADSCrossRefGoogle Scholar
  186. 186.
    T. Das, R. Prabhu, A. Sen(De), U. Sen, Multipartite dense coding versus quantum correlation: noise inverts relative capability of information transfer. Phys. Rev. A 90, 022319 (2014)ADSCrossRefGoogle Scholar
  187. 187.
    A. Kumar, H.S. Dhar, R. Prabhu, A. Sen(De), U. Sen, Forbidden regimes in distribution of bipartite quantum correlations due to multiparty entanglement, arXiv:1505.01748 (2015)
  188. 188.
    C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  189. 189.
    A. Kumar, H.S. Dhar, Lower bounds on violation of monogamy inequality for quantum correlation measures. Phys. Rev. A 93, 062337 (2016)ADSCrossRefGoogle Scholar
  190. 190.
    S. Bose, M.B. Plenio, V. Vedral, Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)ADSMathSciNetCrossRefGoogle Scholar
  191. 191.
    T. Hiroshima, Optimal dense coding with mixed state entanglement. J. Phys. A Math. Gen. 34, 6907 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    M. Ziman, V. Buẑek, Correlation-assisted quantum communication. Phys. Rev. A 67, 042321 (2003)ADSCrossRefGoogle Scholar
  193. 193.
    D. Bruß, G.M. DAriano, M. Lewenstein, C. Macchiavello, A. Sen(De), U. Sen, Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)ADSCrossRefGoogle Scholar
  194. 194.
    D. Bruß, M. Lewenstein, A. Sen(De), U. Sen, G.M. DAriano, C. Macchiavello, Dense coding with multipartite quantum states. Int. J. Quant. Inf. 4, 415 (2006)Google Scholar
  195. 195.
    B.M. Terhal, A family of indecomposable positive linear maps based on entangled quantum states. Lin. Alg. Appl. 323, 61 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002)ADSzbMATHCrossRefGoogle Scholar
  197. 197.
    M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)ADSCrossRefGoogle Scholar
  198. 198.
    D. Bruß, J.I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, A. Sanpera, Reflections upon separability and distillability. J. Mod. Opt. 49, 1399 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Experimental detection of entanglement via witness operators and local measurements. J. Mod. Opt. 50, 1079 (2003)ADSzbMATHCrossRefGoogle Scholar
  200. 200.
    N.D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    M. Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992)ADSMathSciNetCrossRefGoogle Scholar
  202. 202.
    A.V. Belinskii, D.N. Klyshko, Interference of light and Bell’s theorem. Phys. Usp. 36, 653 (1993)ADSCrossRefGoogle Scholar
  203. 203.
    A. Fujiwara, Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)ADSCrossRefGoogle Scholar
  204. 204.
    M. Sarovar, G.J. Milburn, Optimal estimation of one-parameter quantum channels. J. Phys. A Math. Gen. 39, 8487 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    M. Paris, J. Rehacek (eds.), Quantum State Estimation, vol. 649, Lecture notes in physics (Springer, Berlin, 2004)zbMATHGoogle Scholar
  206. 206.
    G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T.C.M. Caronal, Y.-C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)ADSCrossRefGoogle Scholar
  207. 207.
    F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009)ADSCrossRefGoogle Scholar
  208. 208.
    M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462 (2010)CrossRefGoogle Scholar
  209. 209.
    N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  210. 210.
    J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  211. 211.
    S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)MathSciNetzbMATHGoogle Scholar
  212. 212.
    A.K. Pati, S.L. Braunstein, Impossibility of deleting an unknown quantum state. Nature 404, 164 (2000)ADSGoogle Scholar
  213. 213.
    A. Kalev, I. Hen, No-broadcasting theorem and its classical counterpart. Phys. Rev. Lett. 100, 210502 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Himadri Shekhar Dhar
    • 1
    • 2
  • Amit Kumar Pal
    • 1
    • 2
  • Debraj Rakshit
    • 1
    • 2
  • Aditi Sen(De)
    • 1
    • 2
  • Ujjwal Sen
    • 1
    • 2
    Email author
  1. 1.Harish-Chandra Research InstituteJhunsiIndia
  2. 2.Homi Bhabha National InstituteAnushaktinagarIndia

Personalised recommendations