Experimental Investigation of the Dynamics of Quantum Discord in Optical Systems

  • Jin-Shi Xu
  • Chuan-Feng LiEmail author
  • Guang-Can Guo
Part of the Quantum Science and Technology book series (QST)


One of the most remarkable properties in quantum systems is the existence of correlations without the classical counterparts.


  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    H. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 43, 6899–6905 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    B. Dakic et al., Quantum discord as resource for remote state preparation. Nature Phys. 8, 666–670 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    T. Yu, J.H. Eberly, Sudden death of entanglement. Science 323, 598–601 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acín, Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Schumacher, M.D. Westmoreland, Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Hamieh, R. Kobes, H. Zaraket, Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M.D. Lang, C.M. Caves, Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Horodecki et al., Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Dakić, V. Vedral, C̆. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)Google Scholar
  22. 22.
    S. Luo, S. Fu, Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    M.-L. Hu, H. Fan, Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343–2353 (2012)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    G. Puentes, D. Voigt, A. Aiello, J.P. Woerdman, Tunable spatial decoherers for polarization-entangled photons. Opt. Lett. 31, 2057–2059 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A. Aiello, G. Puentes, D. Voigt, A. Aiello, J.P. Woerdman, Maximally entangled mixed-state generation via local operations. Phys. Rev. A 75, 062118 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A.J. Berglund, Quantum Coherence and Control in One- and Two-Photon Optical Systems (2000). arXiv:quant-ph/0010001
  27. 27.
    J.-S. Xu et al., Robust bidirectional links for photonic quantum networks. Sci. Adv. 2, e1500672 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    J.-S. Xu et al., Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240502 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    J.-S. Xu et al., Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 105, 100502 (2010)CrossRefGoogle Scholar
  30. 30.
    J.-S. Xu et al., Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)Google Scholar
  31. 31.
    L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Vedral, B.M. Plenio, M.A. Rippin, P.L. Knight, Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    G. Lindblad, in Quantum Aspects, of Optical Communications-Lecture Notes in Physics, ed. by C. Bendjaballah, et al. (Springer, Singapore, 1991), pp. 71–80Google Scholar
  36. 36.
    J.-S. Xu et al., Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    D. Zhou, A. Lang, R. Joynt, Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process 9, 727–747 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Entanglement dynamics in superconducting qubits affected by local bistable impurities. Phys. Scr. T147, 014019 (2012)Google Scholar
  40. 40.
    P. Bordone, F. Buscemi, C. Benedetti, Effect of Markov and non-Markov classical noise on entanglement dynamics. Fluct. Noise Lett. T147, 014019 (2012)Google Scholar
  41. 41.
    R. Lo Franco, B. Bellomo, E. Andersson, G. Compagno, Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)Google Scholar
  42. 42.
    F. Altintas, A. Kurt, R. Eryigit, Classical memoryless noise-induced maximally discordant mixed separable steady states. Phys. Lett. A 377, 53–59 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    J.-S. Xu et al., Experimental recovery of qunatum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)Google Scholar
  44. 44.
    B.-H. Liu et al., Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Mannone, R. Lo Franco, G. Compagno, Comparison of non-Markovianity criteria in a qubit system under random external fields. Phys. Scr. T153, 014047 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    N. Gisin, R. Thew, Quantum communication. Nat. Photon 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    P. Kok et al., Linear optical quantum computing with photonnic qubits. Rev. Mod. Phys. 79, 135–174 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    R.-C. Ge, M. Gong, C.-F. Li, J.-S. Xu, G.-C. Guo, Quantum correlation and classical correlation dynamics in the spin-boson model. Phys. Rev. A 81, 064103 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    A. Shabani, D.A. Lidar, Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    C.A. Rodríguez-Rosario, G. Kimura, H. Imai, A. Aspuru-Guzik, Sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment. Phys. Rev. Lett. 106, 050403 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    M. Piani et al., All nonclassical correlations can be activated into distillable entanglement. Phys. Rev. Lett. 106, 220403 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    A. Streltsov, H. Kampermann, D. Bruß, Interpreting quantum discord through quantum state merging. Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    G. Adesso et al., Experiemntal entanglement activation from discord in a programmable quantum measurement. Phys. Rev. Lett. 112, 140501 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    T. Konrad et al., Evolution equation for quantum entanglement. Nat. Phys. 4, 99 (2011)CrossRefGoogle Scholar
  57. 57.
    O.J. Farías, C.L. Latune, S.P. Walborn, L. Davidovich, P.H.S. Ribeiro, Determining the dynamics of entanglement. Science 324, 1414 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations