# How Does Interference Fall?

## Abstract

We study how single- and double-slit interference patterns fall in the presence of gravity. First, we demonstrate that universality of free fall still holds in this case, i.e., interference patterns fall just like classical objects. Next, we explore lowest order relativistic effects in the Newtonian regime by employing a recent quantum formalism which treats mass as an operator. This leads to interactions between non-degenerate internal degrees of freedom (like spin in an external magnetic field) and external degrees of freedom (like position). Based on these effects, we present an unusual phenomenon, in which a falling double slit interference pattern periodically decoheres and recoheres. The oscillations in the visibility of this interference occur due to correlations built up between spin and position. Finally, we connect the interference visibility revivals with non-Markovian quantum dynamics.

## Notes

### Acknowledgements

We thank Robert Mann for insightful discussions and German Valencia for pointing out errors in an earlier version of this work.

## Supplementary material

## References

- 1.G. Galilei,
*Dialogo sopra i due massimi sistemi del mondo (Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican)*(University of California Press, California, 1953)Google Scholar - 2.I. Newton,
*Philosophiæ Naturalis Principia Mathematica (The Principia: Mathematical Principles of Natural Philosophy)*, vol. 1687 (University of California Press, California, 1999)Google Scholar - 3.N. Birrell, P. Davies,
*Quantum Fields in Curved Space*, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1984)zbMATHGoogle Scholar - 4.A. Einstein, Über den einfluß der schwerkraft auf die ausbreitung des lichtes. Ann. Phys. (Berlin)
**35**, 898 (1911). [*The Collected Papers of Albert Einstein, Vol. 3: The Swiss Years: Writings, 1909-1911*(University of Chicago Press, 1995)]Google Scholar - 5.M. Zych, C. Brukner, Quantum formulation of the Einstein equivalence principle (2015). arXiv:1502.00971
- 6.M. Inguscio, L. Fallani,
*Atomic Physics: Precise Measurements and Ultracold Matter*(Oxford University Press, Oxford, 2013)CrossRefGoogle Scholar - 7.T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.F. Schaff, J. Schmiedmayer, Integrated Mach–Zehnder interferometer for Bose–Einstein condensates. I, Nat. Commun.
**4**, 1 (2013)Google Scholar - 8.A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature
**400**, 849–852 (1999)ADSCrossRefGoogle Scholar - 9.A. Bonnin, N. Zahzam, Y. Bidel, A. Bresson, Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle. Phys. Rev. A
**92**, 023626 (2015)ADSCrossRefGoogle Scholar - 10.L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Test of equivalence principle at \(1{0}^{-8}\) level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett.
**115**, 013004 (2015)ADSCrossRefGoogle Scholar - 11.J. Williams, S.-w. Chiow, H. Mueller, N. Yu, Quantum Test of the Equivalence Principle and Space-Time Aboard the International Space Station (2015). arXiv:1510.07780
- 12.P.J. Orlando, R. Mann, K. Modi, F.A. Pollock, A test of the equivalence principle(s) for quantum superpositions. Class. Quantum Grav.
**33**, 19LT01 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 13.I. Pikovski, M. Zych, F. Costa, C. Brukner, Universal decoherence due to gravitational time dilation. Nat. Phys.
**11**, 668–672 (2015)CrossRefGoogle Scholar - 14.M. Zych, F. Costa, I. Pikovski, C. Brukner, Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun.
**2**, 505 (2011)ADSCrossRefGoogle Scholar - 15.M. Zych, F. Costa, I. Pikovski, T.C. Ralph, C. Brukner, General relativistic effects in quantum interference of photons. Class. Quantum Grav.
**29**, 224010 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 16.F.A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, K. Modi, Complete Framework for Efficient Characterisation of Non-Markovian Processes (2015). arXiv:1512.00589
- 17.R. Colella, A.W. Overhauser, S.A. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett.
**34**, 1472–1474 (1975)ADSCrossRefGoogle Scholar - 18.A. Streltsov, G. Adesso, M.B. Plenio, Quantum Coherence as a Resource (2016). arXiv:1609.02439
- 19.A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Measuring quantum coherence with entanglement. Phys. Rev. Lett.
**115**, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar - 20.L.C. Céleri, J. Maziero, R.M. Serra, Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf.
**09**(07n08), 1837–1873 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 21.K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys.
**84**, 1655–1707 (2012)ADSCrossRefGoogle Scholar - 22.G. Adesso, T.R. Bromley, M. Cianciaruso, Measures and Applications of Quantum Correlations (2016). arXiv:1605.00806
- 23.A. Rivas, S.F. Huelga, M.B. Plenio, Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys.
**77**, 094001 (2014)ADSMathSciNetCrossRefGoogle Scholar - 24.H.-P. Breuer, Foundations and measures of quantum non-Markovianity. J. Phys. B: At. Mol. Opt. Phys.
**45**(15), 154001 (2012)ADSCrossRefGoogle Scholar - 25.M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, M. Kasevich, Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett.
**81**, 971–974 (1998)ADSCrossRefGoogle Scholar - 26.C. Arenz, R. Hillier, M. Fraas, D. Burgarth, Distinguishing decoherence from alternative quantum theories by dynamical decoupling. Phys. Rev. A
**92**, 022102 (2015)ADSCrossRefGoogle Scholar - 27.B. Hall,
*Quantum Theory for Mathematicians*, Graduate Texts in Mathematics (Springer, New York, 2013)CrossRefzbMATHGoogle Scholar - 28.B.E. Allman, W.T. Lee, O.I. Motrunich, S.A. Werner, Scalar Aharonov–Bohm effect with longitudinally polarized neutrons. Phys. Rev. A
**60**, 4272–4284 (1999)ADSCrossRefGoogle Scholar