Skip to main content

Frozen and Invariant Quantum Discord Under Local Dephasing Noise

Part of the Quantum Science and Technology book series (QST)

Abstract

In nature, there exist various different types of correlations among the constituents of composite physical systems. While macroscopic systems only form correlations of classical nature, quantum mechanics allows for the existence of curious correlations devoid of a classical analogue, such as quantum entanglement. The idea of entanglement is as old as the quantum theory itself.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Gilles, Quantum cryptography: public-key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 1984 (IEEE Computer Society, 1984), pp. 175–179

    Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  3. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124D134

    Google Scholar 

  4. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    CrossRef  ADS  Google Scholar 

  5. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    CrossRef  ADS  MATH  Google Scholar 

  6. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  7. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    CrossRef  ADS  MathSciNet  Google Scholar 

  8. B. Dakic, V. Vedral, C. Brukner, Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    CrossRef  ADS  MATH  Google Scholar 

  9. V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    CrossRef  ADS  Google Scholar 

  10. A. Brodutch, D.R. Terno, Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)

    CrossRef  ADS  MathSciNet  Google Scholar 

  11. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    CrossRef  ADS  Google Scholar 

  12. D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations of quantum discord. Phys. Rev. A. 83, 032324 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  13. A. Streltsov, H. Kampermann, D. Bruss, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    CrossRef  ADS  Google Scholar 

  14. T.K. Chuan, H. Maillard, K. Modo, T. Paterek, M. Paternostro, M. Pianai, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    CrossRef  ADS  Google Scholar 

  15. S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J Quant. Inf. 9, 1643 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. M.F. Cornélio, M.C. de Oliveira, F.F. Fanchni, Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107, 020502 (2011)

    CrossRef  ADS  Google Scholar 

  17. A. Streltsov, H. Kampermann, D. Bruss, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)

    CrossRef  ADS  Google Scholar 

  18. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Google Scholar 

  19. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University, Press, 2007)

    CrossRef  MATH  Google Scholar 

  20. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

    CrossRef  MATH  Google Scholar 

  21. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2010)

    MATH  Google Scholar 

  22. M.A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer, Berlin, 2007)

    Google Scholar 

  23. T. Yu, J.H. Eberly, Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    CrossRef  ADS  Google Scholar 

  24. T. Yu, J.H. Eberly, Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    CrossRef  ADS  Google Scholar 

  25. B. Wang, Z.Y. Xu, Z.Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    CrossRef  ADS  Google Scholar 

  26. A. Auyuanet, L. Davidovich, Quantum correlations as precursors of entanglement. Phys. Rev. A 82, 032112 (2010)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  27. Z.Y. Sun, L. Li, K.L. Yao, G.H. Du, J.W. Liu, B. Luo, N. Li, H.N. Li, Quantum discord in matrix product systems. Phys. Rev. A 82, 032310 (2010)

    CrossRef  ADS  Google Scholar 

  28. T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    CrossRef  ADS  Google Scholar 

  29. J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    CrossRef  ADS  MathSciNet  Google Scholar 

  30. L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)

    CrossRef  ADS  MathSciNet  Google Scholar 

  31. L. Mazzola, J. Piilo, S. Maniscalco, Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9(03), 981 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. P. Haikka, T.H. Johnson, S. Maniscalco, Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87(1), 010103 (2013)

    CrossRef  ADS  Google Scholar 

  33. G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)

    CrossRef  ADS  MATH  Google Scholar 

  34. E.G. Carnio, A. Buchleitner, M. Gessner, Robust asymptotic entanglement under multipartite collective dephasing. Phys. Rev. Lett. 115, 010404 (2015)

    CrossRef  ADS  MathSciNet  Google Scholar 

  35. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    CrossRef  ADS  Google Scholar 

  36. N.J. Cerf, C. Adami, Quantum information theory of entanglement and measurement. Physica D120, 62–81 (1998)

    ADS  MATH  Google Scholar 

  37. V.P. Belavkin, R.L. Stratonovich, Optimization of quantum information processing maximizing mutual information. Radio Eng. Electron. Phys. 19(9), 1349 (1973). [trans. from Radiotekhnika i Electronika, 1973, 19, 9, 1839. 844]

    Google Scholar 

  38. B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    CrossRef  ADS  MathSciNet  Google Scholar 

  39. B. Schumacher, M.D. Westmoreland, Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)

    CrossRef  ADS  Google Scholar 

  40. S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    CrossRef  ADS  Google Scholar 

  41. M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    CrossRef  ADS  Google Scholar 

  42. F. Galve, G.L. Giorgi, R. Zambrini, Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)

    CrossRef  ADS  Google Scholar 

  43. A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  44. G. Lindblad, Quantum entropy and quantum measurement, in Quantum Aspects of Optical Communications, vol. 378, Lecture Notes in Physics, ed. by C. Bendjaballah, et al. (Springer, Heidelberg, 1991), pp. 71–80

    CrossRef  Google Scholar 

  45. B. You, L.-X. Cen, Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)

    CrossRef  ADS  Google Scholar 

  46. T. Chanda, A.K. Pal, A. Biswas, A. Sen (De), U. Sen, Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)

    Google Scholar 

  47. J.P.G. Pinto, G. Karpat, F.F. Fanchini, Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 (2013)

    CrossRef  ADS  Google Scholar 

  48. G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)

    Google Scholar 

  49. B. Bellomo, R. Lo Franco, G. Compagno, Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)

    CrossRef  ADS  Google Scholar 

  50. J.D. Montealegre, F.M. Paula, A. Saguia, M.S. Sarandy, One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    CrossRef  ADS  Google Scholar 

  51. F.M. Paula, I.A. Silva, J.D. Montealegre, A.M. Souza, E.R. deAzevedo, R.S. Sarthour, A. Saguia, I.S. Oliveira, D.O. Soares-Pinto, G. Adesso, M.S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)

    CrossRef  ADS  Google Scholar 

  52. B. Aaronson, R. Lo Franco, G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    CrossRef  ADS  Google Scholar 

  53. M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    CrossRef  ADS  Google Scholar 

  54. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nature Commun. 1, 7 (2010)

    Google Scholar 

  55. R. Auccaise, L.C. Celeri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)

    CrossRef  ADS  Google Scholar 

  56. S. Daffer, K. Wdkiewicz, J.D. Cresser, J.K. McIver, Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)

    CrossRef  ADS  Google Scholar 

  57. J.-S. Xu, C.-F. Li, C.-J. Zhang, X.-Y. Xu, Y.-S. Zhang, G.-C. Guo, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)

    CrossRef  ADS  Google Scholar 

  58. J. Luczka, Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919 (1990)

    CrossRef  ADS  MathSciNet  Google Scholar 

  59. G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum computers and dissipation. Proc. Roy. Soc. Lond. A 452, 567 (1996)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  60. J.H. Reina, L. Quiroga, N.F. Johnson, Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)

    CrossRef  ADS  Google Scholar 

  61. M.A. Cirone, G. De Chiara, G.M. Palma, A. Recati, Collective decoherence of cold atoms coupled to a Bose–Einstein condensate. New J. Phys. 11, 103055 (2009)

    CrossRef  ADS  Google Scholar 

  62. P. Haikka, S. McEndoo, G. De Chiara, G.M. Palma, S. Maniscalco, Quantifying, characterizing, and controlling information flow in ultracold atomic gases. Phys. Rev. A 84, 031602 (2011)

    CrossRef  ADS  Google Scholar 

  63. A.W. Chin, S.F. Huelga, M.B. Plenio, Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    CrossRef  ADS  Google Scholar 

  64. G.R. Fleming, S.F. Huelga, M.B. Plenio, Focus on quantum effects and noise in biomolecules. New J. Phys. 13, 115002 (2011)

    CrossRef  ADS  Google Scholar 

  65. C. Uchiyama, M. Aihara, Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)

    CrossRef  ADS  Google Scholar 

  66. C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)

    CrossRef  ADS  Google Scholar 

  67. L. Viola, E. Knil, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1998)

    Google Scholar 

  68. T.E. Hodgson, L. Viola, I. D’Amico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)

    CrossRef  ADS  Google Scholar 

  69. T.E. Hodgson, L. Viola, I. DAmico, Decoherence-protected storage of exciton qubits through ultrafast multipulse control. Phys. Rev. B 78, 165311 (2008)

    Google Scholar 

  70. L. Viola, S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    CrossRef  ADS  MathSciNet  Google Scholar 

  71. M.J. Biercuk et al., Optimised dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    CrossRef  ADS  Google Scholar 

  72. E.L. Hahn, Spin echoes. Phys. Rev. 80, 580 (1950)

    CrossRef  ADS  MATH  Google Scholar 

  73. K. Khodjasteh, D.A. Lidar, Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)

    CrossRef  ADS  MATH  Google Scholar 

  74. K. Khodjasteh, D.A. Lidar, Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)

    CrossRef  ADS  Google Scholar 

  75. T.E. Hodgson, L. Viola, I. DAmico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)

    CrossRef  ADS  Google Scholar 

  76. G.S. Uhrig, Keeping a quantum bit alive by optimised \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)

    CrossRef  ADS  Google Scholar 

  77. G.S. Uhrig, Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)

    CrossRef  ADS  Google Scholar 

  78. C. Arenz, R. Hillier, M. Fraas, D. Burgarth, Distinguishing decoherence from alternative quantum theories by dynamical decoupling. Phys. Rev. A 92, 022102 (2015)

    CrossRef  ADS  Google Scholar 

  79. C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)

    CrossRef  ADS  Google Scholar 

  80. R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    CrossRef  ADS  Google Scholar 

  81. S. Singha Roy, T.S. Mahesh, G.S. Agarwal, Storing entanglement of nuclear spins via Uhrig dynamical decoupling. Phys. Rev. A 83, 062326 (2011)

    CrossRef  ADS  Google Scholar 

  82. F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous dynamical decoupling. Phys. Rev. A 86, 052310 (2012)

    CrossRef  ADS  Google Scholar 

  83. A. Rosario et al., On the relationship between non-Markovianity and entanglement protection. J. Phys. B At. Mol. Opt. Phys. 45, 095501 (2012)

    CrossRef  ADS  Google Scholar 

  84. B. Bellomo, R. Lo Franco, G. Compagno, Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    CrossRef  ADS  Google Scholar 

  85. J.-S. Zhang, A.-X. Chen, Controlling sudden transitions of bipartite quantum correlations under dephasing via dynamical decoupling. J. Phys. B At. Mol. Opt. Phys. 47, 21 (2014)

    Google Scholar 

Download references

Acknowledgements

S.M. acknowledges the Horizon 2020 EU collaborative project QuProCS (Grant Agreement 641277), the Academy of Finland (Project no. 287750) and the Magnus Ehrnrooth Foundation. C.A. acknowledges financial support from the EPSRC (UK) via the Doctoral Training Centre in Condensed Matter Physics. G.K. is grateful to Sao Paulo Research Foundation (FAPESP) for the fellowship given under grant number 2012/18558-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göktuğ Karpat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karpat, G., Addis, C., Maniscalco, S. (2017). Frozen and Invariant Quantum Discord Under Local Dephasing Noise. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_16

Download citation