Abstract
In nature, there exist various different types of correlations among the constituents of composite physical systems. While macroscopic systems only form correlations of classical nature, quantum mechanics allows for the existence of curious correlations devoid of a classical analogue, such as quantum entanglement. The idea of entanglement is as old as the quantum theory itself.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
B. Gilles, Quantum cryptography: public-key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 1984 (IEEE Computer Society, 1984), pp. 175–179
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124D134
B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)
H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)
B. Dakic, V. Vedral, C. Brukner, Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
V. Madhok, A. Datta, Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)
A. Brodutch, D.R. Terno, Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)
K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Operational interpretations of quantum discord. Phys. Rev. A. 83, 032324 (2011)
A. Streltsov, H. Kampermann, D. Bruss, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)
T.K. Chuan, H. Maillard, K. Modo, T. Paterek, M. Paternostro, M. Pianai, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)
S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J Quant. Inf. 9, 1643 (2011)
M.F. Cornélio, M.C. de Oliveira, F.F. Fanchni, Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107, 020502 (2011)
A. Streltsov, H. Kampermann, D. Bruss, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)
Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University, Press, 2007)
U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)
C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2010)
M.A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer, Berlin, 2007)
T. Yu, J.H. Eberly, Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
T. Yu, J.H. Eberly, Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)
B. Wang, Z.Y. Xu, Z.Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)
A. Auyuanet, L. Davidovich, Quantum correlations as precursors of entanglement. Phys. Rev. A 82, 032112 (2010)
Z.Y. Sun, L. Li, K.L. Yao, G.H. Du, J.W. Liu, B. Luo, N. Li, H.N. Li, Quantum discord in matrix product systems. Phys. Rev. A 82, 032310 (2010)
T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)
L. Mazzola, J. Piilo, S. Maniscalco, Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)
L. Mazzola, J. Piilo, S. Maniscalco, Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9(03), 981 (2011)
P. Haikka, T.H. Johnson, S. Maniscalco, Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87(1), 010103 (2013)
G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)
E.G. Carnio, A. Buchleitner, M. Gessner, Robust asymptotic entanglement under multipartite collective dephasing. Phys. Rev. Lett. 115, 010404 (2015)
K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
N.J. Cerf, C. Adami, Quantum information theory of entanglement and measurement. Physica D120, 62–81 (1998)
V.P. Belavkin, R.L. Stratonovich, Optimization of quantum information processing maximizing mutual information. Radio Eng. Electron. Phys. 19(9), 1349 (1973). [trans. from Radiotekhnika i Electronika, 1973, 19, 9, 1839. 844]
B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)
B. Schumacher, M.D. Westmoreland, Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)
S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)
M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)
F. Galve, G.L. Giorgi, R. Zambrini, Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011)
A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)
G. Lindblad, Quantum entropy and quantum measurement, in Quantum Aspects of Optical Communications, vol. 378, Lecture Notes in Physics, ed. by C. Bendjaballah, et al. (Springer, Heidelberg, 1991), pp. 71–80
B. You, L.-X. Cen, Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)
T. Chanda, A.K. Pal, A. Biswas, A. Sen (De), U. Sen, Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)
J.P.G. Pinto, G. Karpat, F.F. Fanchini, Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 (2013)
G. Karpat, Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)
B. Bellomo, R. Lo Franco, G. Compagno, Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)
J.D. Montealegre, F.M. Paula, A. Saguia, M.S. Sarandy, One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)
F.M. Paula, I.A. Silva, J.D. Montealegre, A.M. Souza, E.R. deAzevedo, R.S. Sarthour, A. Saguia, I.S. Oliveira, D.O. Soares-Pinto, G. Adesso, M.S. Sarandy, Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)
B. Aaronson, R. Lo Franco, G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)
M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, G. Adesso, Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)
J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nature Commun. 1, 7 (2010)
R. Auccaise, L.C. Celeri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)
S. Daffer, K. Wdkiewicz, J.D. Cresser, J.K. McIver, Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)
J.-S. Xu, C.-F. Li, C.-J. Zhang, X.-Y. Xu, Y.-S. Zhang, G.-C. Guo, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 82, 042328 (2010)
J. Luczka, Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919 (1990)
G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum computers and dissipation. Proc. Roy. Soc. Lond. A 452, 567 (1996)
J.H. Reina, L. Quiroga, N.F. Johnson, Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)
M.A. Cirone, G. De Chiara, G.M. Palma, A. Recati, Collective decoherence of cold atoms coupled to a Bose–Einstein condensate. New J. Phys. 11, 103055 (2009)
P. Haikka, S. McEndoo, G. De Chiara, G.M. Palma, S. Maniscalco, Quantifying, characterizing, and controlling information flow in ultracold atomic gases. Phys. Rev. A 84, 031602 (2011)
A.W. Chin, S.F. Huelga, M.B. Plenio, Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)
G.R. Fleming, S.F. Huelga, M.B. Plenio, Focus on quantum effects and noise in biomolecules. New J. Phys. 13, 115002 (2011)
C. Uchiyama, M. Aihara, Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)
C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)
L. Viola, E. Knil, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1998)
T.E. Hodgson, L. Viola, I. D’Amico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)
T.E. Hodgson, L. Viola, I. DAmico, Decoherence-protected storage of exciton qubits through ultrafast multipulse control. Phys. Rev. B 78, 165311 (2008)
L. Viola, S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)
M.J. Biercuk et al., Optimised dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)
E.L. Hahn, Spin echoes. Phys. Rev. 80, 580 (1950)
K. Khodjasteh, D.A. Lidar, Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)
K. Khodjasteh, D.A. Lidar, Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)
T.E. Hodgson, L. Viola, I. DAmico, Towards optimised suppression of dephasing in systems subject to pulse timing constraints. Phys. Rev. A 81, 062321 (2010)
G.S. Uhrig, Keeping a quantum bit alive by optimised \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)
G.S. Uhrig, Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)
C. Arenz, R. Hillier, M. Fraas, D. Burgarth, Distinguishing decoherence from alternative quantum theories by dynamical decoupling. Phys. Rev. A 92, 022102 (2015)
C. Addis, F. Ciccarello, M. Cascio, G.M. Palma, S. Maniscalco, Dynamical decoupling efficiency versus quantum non-Markovianity. New J. Phys. 17, 123004 (2015)
R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)
S. Singha Roy, T.S. Mahesh, G.S. Agarwal, Storing entanglement of nuclear spins via Uhrig dynamical decoupling. Phys. Rev. A 83, 062326 (2011)
F.F. Fanchini, E.F. de Lima, L.K. Castelano, Shielding quantum discord through continuous dynamical decoupling. Phys. Rev. A 86, 052310 (2012)
A. Rosario et al., On the relationship between non-Markovianity and entanglement protection. J. Phys. B At. Mol. Opt. Phys. 45, 095501 (2012)
B. Bellomo, R. Lo Franco, G. Compagno, Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)
J.-S. Zhang, A.-X. Chen, Controlling sudden transitions of bipartite quantum correlations under dephasing via dynamical decoupling. J. Phys. B At. Mol. Opt. Phys. 47, 21 (2014)
Acknowledgements
S.M. acknowledges the Horizon 2020 EU collaborative project QuProCS (Grant Agreement 641277), the Academy of Finland (Project no. 287750) and the Magnus Ehrnrooth Foundation. C.A. acknowledges financial support from the EPSRC (UK) via the Doctoral Training Centre in Condensed Matter Physics. G.K. is grateful to Sao Paulo Research Foundation (FAPESP) for the fellowship given under grant number 2012/18558-5.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Karpat, G., Addis, C., Maniscalco, S. (2017). Frozen and Invariant Quantum Discord Under Local Dephasing Noise. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53412-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-53412-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53410-7
Online ISBN: 978-3-319-53412-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)